Câu hỏi:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, SA vuông góc với mặt phẳng \(\left( {ABC} \right)\) và \(AB = 2,AC = 4,SA = \sqrt 5 \). Mặt cầu đi qua các đỉnh của hình chóp S.ABC có bán kính là:
A. \(R = \frac{5}{2}.\)
Đáp án chính xác
B. \(R = 5.\)
C. \(R = \frac{{10}}{3}.\)
D. \(R = \frac{{25}}{2}.\)
Trả lời:
Đáp án A
Phương pháp:
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp có cạnh bên vuông góc với đáy là \(R = \sqrt {\frac{{{h^2}}}{4} + S_{day}^2} \), trong đó h là chiều cao của khối chóp và \({R_{day}}\) là bán kính đường tròn ngoại tiếp đáy.
Cách giải:
Xét tam giác vuông ABC ta có \(BC = \sqrt {A{B^2} + A{C^2}} = \sqrt {{2^2} + {4^2}} = 2\sqrt 5 \).
Tam giác ABC vuông tại A nên nội tiếp đường tròn đường kính BC.
Gọi \({R_{day}}\) là bán kính đường tròn ngoại tiếp tam giác ABC
Sử dụng công thức tính nhanh bán kính mặt cầu ngoại tiếp chóp S.ABC có \(SA \bot \left( {ABC} \right)\):
\(R = \sqrt {\frac{{S{A^2}}}{4} + S_{day}^2} = \sqrt {\frac{5}{4} + 5} = \frac{5}{2}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\). Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là:
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\). Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là:
A. \(\overrightarrow n \left( {1; – 2;3} \right).\)
Đáp án chính xác
B. \(\overrightarrow n \left( {2;4;6} \right).\)
C. \(\overrightarrow n \left( {1;2;3} \right).\)
D. \(\overrightarrow n \left( { – 1;2;3} \right).\)
Trả lời:
Đáp án A
Mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\) nhận \(\overrightarrow a = \left( {2; – 4;6} \right)\) là một vectơ pháp tuyến.
Xét \(\overrightarrow n = \left( {1; – 2;3} \right)\). Ta có \(\overrightarrow a = 2\overrightarrow n \) nên suy ra \(\overrightarrow a \) và \(\overrightarrow n \) cùng phương. Vậy \(\overrightarrow n = \left( {1; – 2;3} \right)\) cũng là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a là số thực dương khác 5. Tính \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\).
Câu hỏi:
Cho a là số thực dương khác 5. Tính \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\).
A. \(I = – \frac{1}{3}.\)
B. \(I = – 3.\)
C. \(I = \frac{1}{3}.\)
D. \(I = 3.\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
Sử dụng công thức: \({\log _a}{b^m} = m{\log _a}b\;\left( {0 < a \ne 1,b > 0} \right)\).
Cách giải:
Ta có \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right) = {\log _{\frac{a}{5}}}{\left( {\frac{a}{5}} \right)^3} = 3{\log _{\frac{a}{5}}}\left( {\frac{a}{5}} \right) = 3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
Hàm số nghịch biến trên khoảng nào sau đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
Hàm số nghịch biến trên khoảng nào sau đây?A. \(\left( { – \infty ;2} \right).\)
B. \(\left( {0;2} \right).\)
Đáp án chính xác
C. \(\left( {2; + \infty } \right).\)
D. \(\left( {0; + \infty } \right).\)
Trả lời:
Đáp án B
Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên \(\left( {0;2} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \({7^{2{x^2} + 5x + 4}} = 49\) có tổng tất cả các nghiệm bằng:
Câu hỏi:
Phương trình \({7^{2{x^2} + 5x + 4}} = 49\) có tổng tất cả các nghiệm bằng:
A. 1.
B. \(\frac{5}{2}.\)
C. \( – 1.\)
D. \( – \frac{5}{2}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\).
Cách giải:
Ta có \({7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = – \frac{1}{2}\\x = – 2\end{array} \right..\)
Vậy tổng các nghiệm của phương trình là \( – \frac{1}{2} – 2 = – \frac{5}{2}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 5\). Số hạng \({u_4}\) bằng:
Câu hỏi:
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 5\). Số hạng \({u_4}\) bằng:
A. 19.
B. 11.
C. 21.
D. 13.
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \({u_4} = 2.4 + 5 = 13\).====== **** mời các bạn xem câu tiếp bên dưới **** =====