Câu hỏi:
Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
A. Đường tròn tâm O, bán kính R = 1.
B. Hình tròn tâm O, bán kính R = 1 (kể cả biên).
C. Hình tròn tâm O, bán kính R = 1 (không kể biên).
D. Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0;1).
Đáp án chính xác
Trả lời:
Chọn D.
Gọi M(a ; b) là điểm biểu diễn số phức z = a + bi
Ta có:
Để là số thuần ảo thì
Tập hợp các điểm M là đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0; 1).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
Câu hỏi:
Cho các số phức z thỏa mãn |z – 2 – 4i| = 2. Gọi z1; z2 số phức có module lớn nhất và nhỏ nhất. Tổng phần ảo của hai số phức bằng?
A. 8i
B. 4
C. -8
D. 8
Đáp án chính xác
Trả lời:
Chọn D.
Ta có
+ Giá trị lớn nhất của |z| là đạt được tại
+ Giá trị nhỏ nhất của |z| là , đạt được tại
Vậy tổng phần ảo là:====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 – (1 + 3i) z – 2 + 2i = 0 và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức
Câu hỏi:
Gọi z1, z2 lần lượt là hai nghiệm của phương trình z2 – (1 + 3i) z – 2 + 2i = 0 và thỏa mãn | z1| > | z2|. Tìm giá trị của biểu thức
A. 0,5
B. 1,5
Đáp án chính xác
C. 1
D. 2
Trả lời:
Chọn B.
Phương trình đã cho tương đương với:
( z – 2i) ( z – 1 – i) = 0
Suy ra: z = 2i hoặc z = 1 + i
Do | z1| > | z2| nên ta có z1 = 2i và z2 = 1 + i
Ta có
= 1,5
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gọi z1; z2 lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức
Câu hỏi:
Gọi z1; z2 lần lượt là hai nghiệm của phương trình z2 – 4z + 7 = 0 .Tính giá trị của biểu thức
A. 1
B. 3
C. 0
Đáp án chính xác
D. 5
Trả lời:
Chọn C.
Phương trình đã cho tương đương với:
( z – 2) 2 = -3 hay
Từ đó
Do Q là biểu thức đối xứng với z1; z2 nên không mất tính tổng quát, giả sử
Lúc đó:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Câu hỏi:
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
Đáp án chính xác
Trả lời:
Chọn A.
Ta có
Giải bất phương trình trên với ẩn |z| ta được:
Vậy====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho số phức z1; z2 thỏa mãn . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức | z1 – z2 | là?
Câu hỏi:
Cho số phức z1; z2 thỏa mãn . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của biểu thức | z1 – z2 | là?
A. 18
B.
Đáp án chính xác
C. 6
D.
Trả lời:
Chọn B.
Ta có
Do đó và
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất là====== **** mời các bạn xem câu tiếp bên dưới **** =====