Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và \(\int\limits_0^1 {f\left( {2x} \right)dx = 8.} \)
Giá trị của \(I = \int\limits_0^{\sqrt 2 } {xf\left( {{x^2}} \right)dx} \) là
A. 4.
B. 8.
Đáp án chính xác
C. 16.
D. 64.
Trả lời:
Hướng dẫn giải
Đặt \({x^2} = 2u \Rightarrow 2xdx = 2du \Rightarrow xdx = du.\)
Đổi cận \(x = 0 \Rightarrow u = 0,x = \sqrt 2 \Rightarrow u = 1.\)
Khi đó \(I = \int\limits_0^1 {f\left( {2u} \right)du} = \int\limits_0^1 {f\left( {2x} \right)dx} = 8.\)
Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====