Câu hỏi:
Cho hai số phức \({z_1}\) và \({z_2}\) thỏa mãn \(\left| {{z_1}} \right| = 3,\left| {{z_2}} \right| = 4;\left| {{z_1} – {z_2}} \right| = \sqrt {41} .\) Xét các số phức \(z = \frac{{{z_1}}}{{{z_2}}} = a + bi{\mkern 1mu} \left( {a,b \in \mathbb{R}} \right).\) Khi đó \(\left| b \right|\) bằng
A. \(\frac{{\sqrt 3 }}{8}.\)
B. \(\frac{{3\sqrt 3 }}{8}.\)
C. \(\frac{{\sqrt 2 }}{4}.\)
D. \(\frac{{\sqrt 5 }}{4}.\)
Đáp án chính xác
Trả lời:
Đáp án D
+ Biểu diễn lượng giác của số phức
+ \(\frac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}} = \frac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}},{z_2} \ne 0\)
Cách 1: Gọi A, B lần lượt là các điểm biểu diễn của số phức \({z_1},{z_2}\)
Theo đề bài, ta có: \(OA = 3,OB = 4,AB = \sqrt {41} \Rightarrow \cos \widehat {AOB} = \frac{{{3^2} + {4^2} – 41}}{{2.3.4}} = – \frac{2}{3}\)
Đặt \({z_1} = 3\left( {\cos \varphi + i\sin \varphi } \right) \Rightarrow {z_2} = 4\left( {\cos (\varphi \pm AOB)} \right) = 4\left( {\cos (\varphi \pm \alpha ) + i\sin (\varphi \pm \alpha )} \right)\) \(\left( {\alpha = AOB} \right)\)
\( \Rightarrow \frac{{{z_1}}}{{{z_2}}} = \frac{{3\left( {\cos \varphi + i\sin \varphi } \right)}}{{4\left( {\cos (\varphi \pm \alpha ) + i\sin \left( {\varphi \pm \alpha } \right)} \right)}} = \frac{3}{4}\left( {\cos \varphi + i\sin \varphi } \right)\left( {\cos (\varphi \pm \alpha ) – i\sin \left( {\varphi \pm \alpha } \right)} \right)\)
\( = \frac{3}{4}\left[ {\left( {\cos \varphi .\cos \left( {\varphi \pm \alpha } \right) + \sin \varphi .\sin \left( {\varphi \pm \alpha } \right)} \right) + i\left( {\sin \varphi .\cos (\varphi \pm \alpha )} \right) – \cos \varphi .\sin \left( {\varphi \pm \alpha } \right)} \right]\)
\( = \frac{3}{4}\left[ {\cos \left( { \pm \alpha } \right) + i\sin \left( { \pm \alpha } \right)} \right] = \frac{3}{4}\left( {\cos \alpha \pm i\sin \alpha } \right)\)
\( \Rightarrow b = \pm \frac{3}{4}\sin \alpha \Rightarrow \left| b \right| = \frac{3}{4}\sqrt {1 – {{\left( {\frac{2}{3}} \right)}^2}} = \frac{{\sqrt 5 }}{4}\).
Cách 2: Ta có: \(\left| {{z_1}} \right| = 3,{\rm{ }}\left| {{z_2}} \right| = 4,{\rm{ }}\left| {{z_1} – {z_2}} \right| = \sqrt {41} \Rightarrow \left\{ \begin{array}{l}\frac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}} = \frac{3}{4}\\\frac{{\left| {{z_1} – {z_2}} \right|}}{{\left| {{z_2}} \right|}} = \frac{{\sqrt {41} }}{4}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{{\left| {{z_1}} \right|}}{{\left| {{z_2}} \right|}} = \frac{3}{4}\\\left| {\frac{{{z_1}}}{{{z_2}}} – 1} \right| = \frac{{\sqrt {41} }}{4}\end{array} \right.\)
\(z = \frac{{{z_1}}}{{{z_2}}} = a + bi,\left( {a,b \in \mathbb{R}} \right) \Rightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = {\left( {\frac{3}{4}} \right)^2}\\{\left( {a – 1} \right)^2} + {b^2} = {\left( {\frac{{\sqrt {41} }}{4}} \right)^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a^2} + {b^2} = \frac{9}{{16}}\\{\left( {a – 1} \right)^2} + {b^2} = \frac{{41}}{{16}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b^2} = \frac{9}{{16}} – {a^2}\\{\left( {a – 1} \right)^2} + \frac{9}{{16}} – {a^2} = \frac{{41}}{{16}}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{b^2} = \frac{5}{{16}}\\a = – \frac{1}{2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left| b \right| = \frac{{\sqrt 5 }}{4}\\a = – \frac{1}{2}\end{array} \right.\).
Vậy \(\left| b \right| = \frac{{\sqrt 5 }}{4}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \(A\left( {1; – 1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {2;2; – 1} \right).\) Phương trình của (P) là
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \(A\left( {1; – 1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {2;2; – 1} \right).\) Phương trình của (P) là
A. \(2x + 2y – z – 6 = 0.\)
B. \(2x + 2y – z + 2 = 0.\)
Đáp án chính xác
C. \(2x + 2y – z + 6 = 0.\)
D. \(2x + 2y – z – 2 = 0.\)
Trả lời:
Đáp án B
Phương trình \(\left( P \right)\) là: \(2{\rm{x}} + 2y – z + 2 = 0\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?
Câu hỏi:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?
A. \(y = \frac{{ – x – 1}}{{x – 1}}\)
Đáp án chính xác
B. \(y = \frac{{x + 1}}{{x – 1}}\)
C. \(y = \frac{{ – x + 1}}{{x + 1}}\)
D. \(y = \frac{{x – 1}}{{x + 1}}\)
Trả lời:
Đáp án A
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng lần lượt là \(y = 1;x = – 1\).
Ngoài ra hàm số đồng biến trên tập xác định. Chọn A hoặc C.
Tiếp tục tính đạo hàm để loại trừ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \(\overrightarrow 0 \), có điểm đầu và điểm cuối lấy trong các điểm đã cho là
Câu hỏi:
Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \(\overrightarrow 0 \), có điểm đầu và điểm cuối lấy trong các điểm đã cho là
A. \({2^{10}}\)
B. \(A_{10}^2\)
Đáp án chính xác
C. \(10!\)
D. \(C_{10}^2\)
Trả lời:
Đáp án B
Số vectơ (phân biệt điểm đầu, điểm cuối) là \(A_{10}^2\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) và \(f\left( 1 \right) – f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {\left[ {f'\left( x \right) – {e^x}} \right]dx} \).
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) và \(f\left( 1 \right) – f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {\left[ {f’\left( x \right) – {e^x}} \right]dx} \).
A. \(1 – e\)
B. \(1 + e\)
C. \(3 – e\)
Đáp án chính xác
D. \(3 + e\)
Trả lời:
Đáp án C
\(I = \int\limits_0^1 {f’\left( x \right)d{\rm{x}}} – \int\limits_0^1 {{e^x}d{\rm{x}}} = \left. {f\left( x \right)} \right|_0^1 – \left. {{e^x}} \right|_0^1 = f\left( 1 \right) – f\left( 0 \right) – \left( {e – 1} \right) = 2 – e + 1 = 3 – e\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({3^{2x – 1}} > 27\) là:
Câu hỏi:
Tập nghiệm của bất phương trình \({3^{2x – 1}} > 27\) là:
A. \(\left( {3; + \infty } \right).\)
B. \(\left( {\frac{1}{3}; + \infty } \right).\)
C. \(\left( {\frac{1}{2}; + \infty } \right).\)
D. \(\left( {2; + \infty } \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
\({3^{2{\rm{x}} – 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} – 1}} > {3^3} \Leftrightarrow 2{\rm{x}} – 1 > 3 \Leftrightarrow x > 2\)
Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====