Câu hỏi:
Xét tam giác ABC nhọn nội tiếp đường tròn(O;R) . Gọi lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB, quay tam giac OBC quanh trung trực của đoạn thẳng BC. Khi biểu thức đạt giá trị lớn nhất, tính theo
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Xét hàm . Với .
Khi đó .
Lập bảng biến thiên, thấy rằng .
Khi đó, áp dụng cho : đạt giá trị lớn nhất khi .
Hay khi đó tam giác ABC cân tại A (do OP =OQ).
Mà lúc đó .
Do tam giác ABC cân A nên khi đó .
Ta có .
Mà .
Vậy
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số y=log73x+1 có tập xác định là:
Câu hỏi:
Hàm số có tập xác định là:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án A
Hàm số xác định khi . Tập xác định: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong A, B lần lượt là diểm biểu diễn các số phức . Trọng tâm G của tam giác OAB là điểm biểu diễn số phức như trong hình vẽ. Giá trị z12+z22+z32 bằng:
Câu hỏi:
Trong A, B lần lượt là diểm biểu diễn các số phức . Trọng tâm G của tam giác OAB là điểm biểu diễn số phức như trong hình vẽ. Giá trị bằng:
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Đáp án B
Ta có: .
Suy ra .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=fx có bảng biến thiên như sau:
Số điểm cực đại của hàm số đã cho bằng:
Câu hỏi:
Cho hàm số có bảng biến thiên như sau:
Số điểm cực đại của hàm số đã cho bằng:
A. 1
B. 2
Đáp án chính xác
C. 3
D. 0
Trả lời:
Đáp án B
Hàm số đạt cực đại tại các điểm .
Vậy số điểm cực đại của hàm số đã cho bằng 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho F(x) là một nguyên hàm của f(x) trên [0;1] , biết F1=2 và ∫−11x+1Fxdx=1 . Giá trị tích phân S=∫−11x+12fxdx là:
Câu hỏi:
Cho F(x) là một nguyên hàm của f(x) trên [0;1] , biết và . Giá trị tích phân là:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án A
Ta có:====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=f(x) có bảng biến thiên như sau:
Đồ thị hàm số y=1f2020−x−2 có bao nhiêu tiệm cận đứng?
Câu hỏi:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Đồ thị hàm số có bao nhiêu tiệm cận đứng?
A. 2
B. 3
Đáp án chính xác
C. 1
D. 0
Trả lời:
Đáp án B
Dựa vào bảng biến thiên, ta có có 3 nghiệm.
Suy ra đồ thị hàm số có 3 tiệm cận đứng====== **** mời các bạn xem câu tiếp bên dưới **** =====