Câu hỏi:
Trong mặt phẳng cho 40 điểm tạo thành đa giác đều. Lấy ngẫu nhiên 4 điểm, tính xác suất sao cho 4 điểm này tạo thành hình chữ nhật mà không phải là hình vuông.
A. \(\frac{1}{{247}}\) .
B. \(\frac{1}{{481}}\).
C. \(\frac{{18}}{{9139}}\).
Đáp án chính xác
D. \(\frac{1}{{5928}}\) .
Trả lời:
Chọn đáp án C Lấy 4 điểm bất kì từ 40 điểm nên số phần tử của không gian mẫu là \(n\left( \Omega \right) = C_{40}^4\). Ta có 40 điểm đã cho tạo thành đa giác đều nội tiếp trong đường tròn tâm O. Đánh số các điểm này theo thứ tự từ 1 đến 40, 40 điểm này tạo nên 20 đường kính của đường tròn (O). Mỗi hình chữ nhật được tạo nên bởi 2 đường chéo là 2 đường kính nên số hình chữ nhật (kể cả hình vuông) được tạo nên từ 4 đỉnh của đa giác đều là \(C_{20}^2\).Ta tính số hình vuông: Mỗi hình vuông được tạo nên bởi 2 đường kính vuông góc. Với mỗi đường kính tồn tại duy nhất một đường kính vuông góc với nó. Vậy có 20 hình vuông, nhưng mỗi hình vuông bị lặp lại 2 lần nên có 20:2=10 (hình vuông). Vậy số hình chữ nhật mà không là hình vuông là \(C_{20}^2 – 10\).Xác suất cần tìm là \(P = \frac{{C_{20}^2 – 10}}{{C_{40}^4}} = \frac{{18}}{{9139}}\). Chú ý: Có thể đếm số hình vuông theo cách 2 như sau: Chọn đáp ánđỉnh đầu tiên của hình vuông – có 40 cách Chọn đáp án; với mỗi cách Chọn đáp ánmột đỉnh thì luôn có một cách Chọn đáp ánduy nhất 3 đỉnh còn lại để tạo thành hình vuông (2 đỉnh liên tiếp của hình vuông hơn kém nhau 10 đơn vị, ví dụ ta Chọn đáp ánđỉnh đầu tiên là đỉnh số 1 thì 3 đỉnh còn lại là các đỉnh số 11, 21,31). Như vậy Chọn đáp ánđược 40 hình vuông, tuy nhiên mỗi hình vuông đã được tính lặp 4 lần nên số hình vuông thực tế là \(40:4 = 10\)(hình vuông).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lớp 12A có 18 học sinh nữ và 17 học sinh nam. Giáo viên Chọn đáp án 1 học sinh trong lớp làm tình nguyện viên tham gia phong trào thanh niên của nhà trường. Hỏi có bao nhiêu cách chọn
Câu hỏi:
Lớp 12A có 18 học sinh nữ và 17 học sinh nam. Giáo viên Chọn đáp án 1 học sinh trong lớp làm tình nguyện viên tham gia phong trào thanh niên của nhà trường. Hỏi có bao nhiêu cách chọn
A.306.
B. 1.
C. 35.
Đáp án chính xác
D. 17.
Trả lời:
Chọn đáp án C
Tổng số học sinh của lớp là \(18 + 17 = 35\).
Số cách chọn 1 học sinh trong lớp là 35 cách.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân
\(\left( {{u_n}} \right)\) với \({u_1} = \,3\) và \({u_2} = 12\). Công bội của cấp số nhân đã cho bằng
Câu hỏi:
Cho cấp số nhân
\(\left( {{u_n}} \right)\) với \({u_1} = \,3\) và \({u_2} = 12\). Công bội của cấp số nhân đã cho bằngA.4.
Đáp án chính xác
B. 3.
C. 9.
D.\(\frac{1}{4}\).
Trả lời:
Chọn đáp án A
Ta có: \({u_2} = {u_1}.q \Rightarrow q = \frac{{{u_2}}}{{{u_1}}} = \frac{{12}}{3}\, = \,4\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \({4^x} – {3.2^x} + 2 = 0\) có nghiệm thuộc khoảng
Câu hỏi:
Phương trình \({4^x} – {3.2^x} + 2 = 0\) có nghiệm thuộc khoảng
A. \(\left( {\frac{1}{2};2} \right)\).
Đáp án chính xác
B. \(\left( {2;4} \right)\).
C.\(\left( { – 1;0} \right)\).
D. \(\left( {3;6} \right)\).
Trả lời:
Chọn đáp án A
\({4^x} – {3.2^x} + 2 = 0 \Leftrightarrow \left[ \begin{array}{l}{2^x} = 1\\{2^x} = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1 \in \left( {\frac{1}{2};2} \right)\end{array} \right.\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thể tích khối chóp có đường cao bằng \(a\) và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là
Câu hỏi:
Thể tích khối chóp có đường cao bằng \(a\) và diện tích đáy bằng \(2{a^2}\sqrt 3 \) là
A.\(\frac{{2{a^3}\sqrt 3 }}{3}\).
Đáp án chính xác
B.\(\frac{{2{a^3}\sqrt 3 }}{2}\).
C.\(\frac{{2{a^3}}}{3}\).
D.\(\frac{{5{a^3}}}{{\sqrt 3 }}\).
Trả lời:
Chọn đáp án A
Thể tích khối chóp là \(V = \frac{1}{3}.a.2{a^2}\sqrt 3 = \frac{{2{a^3}\sqrt 3 }}{3}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập xác định của hàm số \(y = {\log _3}\left( {x – 1} \right)\) là
Câu hỏi:
Tập xác định của hàm số \(y = {\log _3}\left( {x – 1} \right)\) là
A. \(\left( {1; + \infty } \right)\).
Đáp án chính xác
B. \(\left[ {1; + \infty } \right)\).
C. \(\left( { – \infty ;1} \right)\).
D.\(\left( {3; + \infty } \right)\).
Trả lời:
Chọn đáp án A
Hàm số \(y = {\log _3}\left( {x – 1} \right)\) có nghĩa khi \(x – 1 >0 \Rightarrow x >1\).
Vậy tập xác định của hàm số \(y = {\log _3}\left( {x – 1} \right)\) là \(\left( {1; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====