Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A (1;1;0), B (0;-1;2). Biết rằng có hai mặt phẳng cùng đi qua hai điểm A, O và cùng cách B một khoảng bằng . Véctơ nào trong các véctơ dưới đây là một véctơ pháp tuyến của một trong hai mặt phẳng đó.
Đáp án chính xác
Trả lời:
Chọn D
Phương trình đường thẳng qua hai điểm A, O có dạng
Gọi (P) là mặt phẳng cùng đi qua hai điểm A, O nên (P) : a(x-y)+bz=0, a²+b² > 0. Khi đó véctơ pháp tuyến của (P) có dạng
Ta có:
Với a = b thì VTPT của một trong hai mặt phẳng là:
Với b = -5a thì VTPT của một trong hai mặt phẳng là:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
A. 2x-y+2z-3=0.
B. 4x-y-z-6=0
C. 2x+y+2z-6=0
D. x+2y+2z-6=0.
Đáp án chính xác
Trả lời:
Chọn D
Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho hai điểm M (2;2;1), N(-83;43;83) . Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz).
Câu hỏi:
Trong không gian Oxyz, cho hai điểm M (2;2;1), . Viết phương trình mặt cầu có tâm là tâm của đường tròn nội tiếp tam giác OMN và tiếp xúc với mặt phẳng (Oxz).
A. x²+ (y+1)²+ (z+1)²=1.
B. x²+ (y-1)²+ (z-1)²=1
Đáp án chính xác
C. (x-1)²+ (y-1)²+z²=1
D. (x-1)²+y²+ (z-1)²=1.
Trả lời:
Chọn B
Gọi I là tâm đường tròn nội tiếp tam giác OMN.
Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, ta có với a = MN, b = ON, c = OM.
Ta có:
Mặt phẳng (Oxz) có phương trình y = 0.
Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d (I, (Oxz)) = 1.
Vậy phương trình mặt cầu là x²+ (y-1)²+ (z-1)²=1.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, Cho mặt phẳng (R): x+y-2z+2=0 và đường thẳng ∆1:x2=y1=z-1-1.Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1 có phương trình là:
Câu hỏi:
Trong không gian Oxyz, Cho mặt phẳng (R): x+y-2z+2=0 và đường thẳng .Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1 có phương trình là:
Đáp án chính xác
Trả lời:
Chọn A
Phương trình tham số của đường thẳng Δ1 là
Gọi I (x;y;z) là giao điểm của Δ1 và (R).
Khi đó tọa độ của I là thỏa mãn:
Mặt phẳng (R) có VTPT ; Đường thẳng Δ1 có VTCP .
Đường thẳng Δ2 nằm trong mặt phẳng (R) đồng thời cắt và vuông góc với đường thẳng Δ1.
Do đó Δ2 đi qua I = (0;0;1) và nhận làm một VTCP.
Vậy phương trình của Δ2 là====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.
Câu hỏi:
Trong không gian Oxyz, mặt phẳng (α) đi qua M (1;1;4) cắt các tia Ox, Oy, Oz lần lượt tại A, B, C phân biệt sao cho tứ diện OABC có thể tích nhỏ nhất. Tính thể tích nhỏ nhất đó.
A. 72.
B. 108
Đáp án chính xác
B. 18.
D. 36.
Trả lời:
Chọn B
Đặt A= (a;0;0), B= (0;b;0), C= (0;0;c) với a, b, c>0.
Khi đó phương trình mặt phẳng (α) là
Vì (α) đi qua M (1;1;4) nên
Thể tích của tứ diện OABC là
Áp dụng bất đẳng thức AM – GM ta có
Dấu bằng xảy ra khi a=b=3 ; c=12.
Vậy tứ diện OABC có thể tích nhỏ nhất bằng====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho đường thẳng d:x-11=y-1=z-21và mặt phẳng (P): 2x-y-2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là:
Câu hỏi:
Trong không gian Oxyz, cho đường thẳng và mặt phẳng (P): 2x-y-2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là:
Đáp án chính xác
Trả lời:
Chọn C
Phương trình tham số của . Gọi M = d ∩ (P).
Khi đó M ∈ d nên M (1+t;-t;2+t) ; M ∈ (P) nên 2(1 + t) – (- t) – 2 (2 + t) + 1 = 0 ó t = 1.
Vậy đường thẳng d cắt mặt phẳng (P) tại M (2;-1;3).
Gọi lần lượt là vectơ chỉ phương của d và vectơ pháp tuyến của mặt phẳng (P).
Khi đó một vectơ chỉ phương của đường thẳng cần tìm là .
Vậy phương trình đường thẳng cần tìm là====== **** mời các bạn xem câu tiếp bên dưới **** =====