Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(1;0;0), B(0;1;0), C(0;0;1), D(0;0;0). Hỏi có bao nhiêu điểm cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB).
A. 4
B. 5
C. 1
D. 8
Đáp án chính xác
Trả lời:
Chọn D
Gọi điểm cần tìm là M (x0; y0; z0)
Phương trình mặt phẳng (ABC) là:
Phương trình mặt phẳng (BCD) là: x = 0
Phương trình mặt phẳng (CDA) là: y = 0
Phương trình mặt phẳng (DAB) là: z= 0.
Ta có M cách đều 4 mặt phẳng (ABC), (CDA), (BCD), (DAB) nên:
Ta có các trường hợp sau:
Vậy có 8 điểm M thỏa mãn bài toán.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(1;2;3) và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C (khác O). Viết phương trình mặt phẳng (P) sao cho M là trực tâm của tam giác ABC.
A. 6x + 3y – 2z – 6 = 0
B. x + 2y + 3z – 14 = 0
Đáp án chính xác
C. x + 3y + 2z – 11 = 0
Trả lời:
Chọn B
Gọi A (a; 0; 0), B(0; b; 0) và C(0; 0; c) với abc ≠ 0. Phương trình mặt phẳng (P) đi qua ba điểm A, B, C là
.
Vì M(1;2;3) ∈ (P) nên ta có: .
Điểm M là trực tâm của tam giác ABC.
Phương trình mặt phẳng (P) là: <=> x + 2y + 3z – 14 = 0====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho ba điểm A(0;0;-1), B(-1;1;0), C(1;0;1). Tìm điểm M sao cho 3MA2 + 2MB2 – MC2 đạt giá trị nhỏ nhất.
Câu hỏi:
Trong không gian Oxyz, cho ba điểm A(0;0;-1), B(-1;1;0), C(1;0;1). Tìm điểm M sao cho 3MA2 + 2MB2 – MC2 đạt giá trị nhỏ nhất.
Đáp án chính xác
Trả lời:
Chọn D
Cách 1: Giả sử
Cách 2: Ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?
Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C (0;0;c), trong đó a > 0, b > 0, c > 0. Mặt phẳng (ABC) đi qua điểm I (1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị lớn nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?
A. a + b + c = 12
B. a2 + b = c – 6
C. a + b + c = 18
Đáp án chính xác
D. a + b – c = 0
Trả lời:
Chọn C
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).
Câu hỏi:
Cho tứ diện ABCD có BD = 2, hai tam giác ABD, BCD có diện tích lần lượt là 6 và 10. Biết thể tích của tứ diện ABCD bằng 16, tính số đo góc giữa hai mặt phẳng (ABD) và (BCD).
A. arccos(4/15)
B. 1
C. arcsin(4/5)
Đáp án chính xác
D. arccos(4/5)
Trả lời:
Chọn C
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho điểm H (2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A, B, C sao cho H là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
Câu hỏi:
Trong không gian Oxyz, cho điểm H (2;1;1). Gọi (P) là mặt phẳng đi qua H và cắt các trục tọa độ tại A, B, C sao cho H là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là:
A. 2x + y + z – 6 = 0
Đáp án chính xác
B. x + 2y + z – 6 = 0
C. x + 2y + 2z – 6 = 0
D. 2x + y + z + 6 = 0
Trả lời:
Chọn A
Cách 1. Giả sử A (a; 0; 0) ∈ Ox, B (0;b;0) ∈ Oy, C (0;0;c) ∈ Oz.
Khi đó mặt phẳng (P) có dạng:
Do H là trực tâm tam giác ABC nên:
Vậy phương trình của mặt phẳng (P) là:
Cách 2. Vì tứ diện OABC có các cạnh đôi một vuông tại O và H là trực tâm tam giác ABC nên (tham khảo bài tập 4, trang 105 SGK HH11).
Suy ra Khi đó phương trình mặt phẳng (P) có dạng: 2x + y + x + D = 0
H ∈ (P) nên: 2.2 + 1 + 1 + D = 0 => D = -6
Vậy phương trình mặt phẳng là: 2x + y + z – 6 = 0====== **** mời các bạn xem câu tiếp bên dưới **** =====