Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x – 2y + z – 5 = 0\) và hai đường thẳng \({d_1}:\frac{{x + 1}}{1} = \frac{{y + 3}}{1} = \frac{{z – 4}}{{ – 1}},{\rm{ }}{d_2}:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 3}}{1}.\) Viết phương trình đường thẳng d nằm trên mặt phẳng \(\left( P \right),\) đồng thời cắt cả hai đường thẳng \({d_1}\) và \({d_2}.\)
A. \(d:\frac{{x – 1}}{1} = \frac{{y + 1}}{1} = \frac{{z – 2}}{1}\)
B. \(d:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 2}}{3}.\)
Đáp án chính xác
C. \(d:\frac{{x – 1}}{{ – 1}} = \frac{{y + 1}}{1} = \frac{{z – 2}}{3}.\)
D. \(d:\frac{{x – 2}}{{ – 1}} = \frac{y}{1} = \frac{{z – 1}}{3}.\)
Trả lời:
Đáp án B
Gọi \(M = {d_1} \cap d,\) ta có
\({d_1}:\left\{ \begin{array}{l}x = – 1 + t\\y = – 3 + t\\z = 4 – t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right) \Rightarrow M\left( {m – 1;m – 3;4 – m} \right).\)
Gọi \(N = {d_2} \cap d\), ta có
\({d_2}:\left\{ \begin{array}{l}x = 1 + t’\\y = – 1 + 2t’\\z = 3 + t’\end{array} \right.{\rm{ }}\left( {t’ \in \mathbb{R}} \right) \Rightarrow N\left( {n + 1;2n – 1;n + 3} \right).\)
Bài ra d nằm trên \(\left( P \right)\) nên
\(\left\{ {\begin{array}{*{20}{l}}{M \in \left( P \right)}\\{N \in \left( P \right)}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{\left( {m – 1} \right) – 2\left( {m – 3} \right) + \left( {4 – m} \right) – 5 = 0}\\{\left( {n + 1} \right) – 2\left( {2n – 1} \right) + \left( {n + 3} \right) – 5 = 0}\end{array}} \right.\)
\( \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ – 2m + 4 = 0}\\{ – 2n + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m = 2 \Rightarrow M\left( {1; – 1;2} \right)}\\{n = \frac{1}{2} \Rightarrow N\left( {\frac{3}{2};0;\frac{7}{2}} \right)}\end{array}} \right. \Rightarrow \overrightarrow {MN} = \left( {\frac{1}{2};1;\frac{3}{2}} \right).\)
Đường thẳng d nhận \(\overrightarrow {MN} = \left( {\frac{1}{2};1;\frac{3}{2}} \right)\) là một VTCP nên nhận \(\overrightarrow u = \left( {1;2;3} \right)\) là một VTCP.
Kết hợp với d qua \(M\left( {1; – 1;2} \right) \Rightarrow d:\frac{{x – 1}}{1} = \frac{{y + 1}}{2} = \frac{{z – 2}}{3}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a là số thực dương tùy ý và \(a \ne 1.\) Mệnh đề nào dưới đây là đúng?
Câu hỏi:
Cho a là số thực dương tùy ý và \(a \ne 1.\) Mệnh đề nào dưới đây là đúng?
A. \({\log _{\sqrt a }}{a^2} = 2.\)
B. \({\log _{\sqrt a }}{a^2} = 4.\)
Đáp án chính xác
C. \({\log _{\sqrt a }}{a^2} = a.\)
D. \({\log _{\sqrt a }}{a^2} = 2a.\)
Trả lời:
Đáp án B
Ta có \({\log _{\sqrt a }}{a^2} = {\log _{{a^{\frac{1}{2}}}}}{a^2} = \frac{2}{{\frac{1}{2}}}{\log _a}a = 4.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\) Tìm q.
Câu hỏi:
Cho cấp số nhân \(\left( {{u_n}} \right)\) với \({u_1} = 3,{\rm{ }}{u_6} = \frac{3}{{32}}.\) Tìm q.
A. \(q = 2.\)
B. \(q = 4.\)
C. \(q = \frac{1}{4}.\)
D. \(q = \frac{1}{2}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \({u_6} = {u_1}{q^5} \Rightarrow \frac{3}{{32}} = 3{q^5} \Rightarrow q = \frac{1}{2}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?
Câu hỏi:
Điểm M như hình vẽ bên là điểm biểu diễn số phức nào dưới đây?
A. \(z = 3 – 2i.\)
B. \(z = – 2 + 3i.\)
Đáp án chính xác
C. \(z = 2 – 3i.\)
D. \(z = 3 + 2i.\)
Trả lời:
Đáp án B
Ta có \(M\left( { – 2;3} \right) \Rightarrow z = – 2 + 3i.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\) Tích phân \(\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \) bằng
Câu hỏi:
Cho \(\int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = 5.\) Tích phân \(\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} \) bằng
A. 4.
B. 8.
C. 6.
Đáp án chính xác
D. 7.
Trả lời:
Đáp án C
Ta có \(\int\limits_0^{\frac{\pi }{2}} {\left[ {\cos x + f\left( x \right)} \right]dx} = \int\limits_0^{\frac{\pi }{2}} {\cos xdx + \int\limits_0^{\frac{\pi }{2}} {f\left( x \right)dx} = \sin x\left| {_{\scriptstyle\atop\scriptstyle0}^{\frac{\pi }{2}}} \right. + 5 = 6.} \)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho vectơ \(\vec a = 2\vec i + \vec k – 3\vec j.\) Tọa độ của vectơ \(\vec a\) là
Câu hỏi:
Trong không gian Oxyz, cho vectơ \(\vec a = 2\vec i + \vec k – 3\vec j.\) Tọa độ của vectơ \(\vec a\) là
A. \(\left( {1;{\mkern 1mu} 2;{\mkern 1mu} – 3} \right).\)
B. \(\left( {2;{\mkern 1mu} – 3;{\mkern 1mu} 1} \right).\)
Đáp án chính xác
C. \(\left( {2;{\mkern 1mu} 1;{\mkern 1mu} – 3} \right).\)
D. \(\left( {1;{\mkern 1mu} – 3;{\mkern 1mu} 2} \right).\)
Trả lời:
Đáp án B
Ta có \(\overrightarrow a = 2\overrightarrow i + \overrightarrow k – 3\overrightarrow j = 2\overrightarrow i – 3\overrightarrow j + \overrightarrow k \Rightarrow \overrightarrow a = \left( {2; – 3;1} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====