Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x – 5y – z = 0\) và đường thẳng \(d:\frac{{x – 1}}{1} = \frac{{y + 1}}{1} = \frac{{z – 3}}{{ – 1}}.\) Viết phương trình đường thẳng Δ nằm trên mặt phẳng (P) sao cho Δ cắt và vuông góc với đường thẳng d.
A. \(\Delta :\frac{{x – 3}}{6} = \frac{{y – 1}}{1} = \frac{{z – 1}}{7}.\)
Đáp án chính xác
B. \(\Delta :\frac{{x – 2}}{6} = \frac{y}{{ – 5}} = \frac{{z – 2}}{1}.\)
C. \(\Delta :\frac{{x – 2}}{5} = \frac{y}{1} = \frac{{z – 2}}{6}.\)
D. \(\Delta :\frac{{x – 3}}{4} = \frac{{y – 1}}{3} = \frac{{z – 1}}{7}.\)
Trả lời:
Đáp án A
Ta có \(d:\left\{ \begin{array}{l}x = 1 + t\\y = – 1 + t\\z = 3 – t\end{array} \right.{\rm{ }}\left( {t \in \mathbb{R}} \right)\).
Giả sử \(\Delta \) cắt và vuông góc với d tại \(M \Rightarrow M\left( {t + 1;t – 1;3 – t} \right)\).
Bài ra \(\Delta \) nằm trên \(\left( P \right) \Rightarrow M \in \left( P \right) \Rightarrow 2\left( {t + 1} \right) – 5\left( {t – 1} \right) – \left( {3 – t} \right) = 0\)
\( \Leftrightarrow – 2t + 4 = 0 \Leftrightarrow t = 2 \Rightarrow M\left( {3;1;1} \right)\).
Mặt phẳng \(\left( P \right)\) có một VTPT là \(\overrightarrow n = \left( {2; – 5; – 1} \right)\).
Đường thẳng d có một VTCP là \(\overrightarrow u = \left( {1;1; – 1} \right)\).
Đường thẳng \(\Delta \) nằm trên \(\left( P \right)\) và \(\Delta \bot {\rm{d}} \Rightarrow \Delta \) nhận \(\left[ {\overrightarrow n ;\overrightarrow u } \right] = \left( {6;1;7} \right)\) là một VTCP.
Kết hợp với \(\Delta \) qua \(M\left( {3;1;1} \right) \Rightarrow \Delta :\frac{{x – 3}}{6} = \frac{{y – 1}}{1} = \frac{{z – 1}}{7}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a là số thực dương tùy ý và \(a \ne 1.\) Mệnh đề nào dưới đây là đúng?
Câu hỏi:
Cho a là số thực dương tùy ý và \(a \ne 1.\) Mệnh đề nào dưới đây là đúng?
A. \({\log _3}a = {\log _a}3.\)
B. \({\log _3}a = \frac{1}{{{{\log }_3}a}}.\)
C. \({\log _3}a = \frac{1}{{{{\log }_a}3}}.\)
Đáp án chính xác
D. \({\log _3}a = – {\log _a}3.\)
Trả lời:
Đáp án C
Ta có \({\log _3}a = \frac{1}{{{{\log }_a}3}}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Điểm nào trong hình vẽ bên là điểm biểu diễn số phức \(z = – 1 – 2i\)?
Câu hỏi:
Điểm nào trong hình vẽ bên là điểm biểu diễn số phức \(z = – 1 – 2i\)?
A. Điểm A.
B. Điểm B.
C. Điểm C.
Đáp án chính xác
D. Điểm D.
Trả lời:
Đáp án C
Điểm biểu diễn số phức \(z = – 1 – 2i\) có tọa độ \(\left( { – 1;2} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \(\int\limits_0^1 {f\left( x \right)dx} = 2\) và \(\int\limits_1^2 {f\left( x \right)dx} = – 3.\) Tích phân \(\int\limits_0^2 {f\left( x \right)dx} \) bằng
Câu hỏi:
Cho \(\int\limits_0^1 {f\left( x \right)dx} = 2\) và \(\int\limits_1^2 {f\left( x \right)dx} = – 3.\) Tích phân \(\int\limits_0^2 {f\left( x \right)dx} \) bằng
A. 5.
B. \( – 5.\)
C. 1.
D. \( – 1.\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(\int\limits_0^2 {f\left( x \right)d{\rm{x}}} = \int\limits_0^1 {f\left( x \right)d{\rm{x}}} + \int\limits_1^2 {f\left( x \right)d{\rm{x}}} = – 1\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho hai điểm \(A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\) Tìm tọa độ của vectơ \(\overrightarrow {AB} .\)
Câu hỏi:
Trong không gian Oxyz, cho hai điểm \(A\left( {2;3;4} \right),{\rm{ }}B\left( {6;2;2} \right).\) Tìm tọa độ của vectơ \(\overrightarrow {AB} .\)
A. \(\overrightarrow {AB} = \left( {4;3;4} \right).\)
B. \(\overrightarrow {AB} = \left( {4; – 1; – 2} \right).\)
Đáp án chính xác
C. \(\overrightarrow {AB} = \left( { – 2;3;4} \right).\)
D. \(\overrightarrow {AB} = \left( {4; – 1;4} \right).\)
Trả lời:
Đáp án B
Ta có \(\overrightarrow {AB} = \left( {4; – 1; – 2} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?
Câu hỏi:
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ ?
A. \(y = {x^3} – 3{x^2} – 2.\)
B. \(y = {x^3} – 3x – 2.\)
C. \(y = – {x^3} + 3{x^2} – 2.\)
D. \(y = – {x^3} + 3x – 2.\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(y\left( 1 \right) = 0 \Rightarrow \) Loại A và B. Mà \(y\left( { – 1} \right) = – 4\).====== **** mời các bạn xem câu tiếp bên dưới **** =====