Câu hỏi:
Trong không gian Oxyz cho mặt cầu (S): (x – 1)² + (y – 2)² + (z – 3)² = 9 và mặt phẳng (P): 2x – 2y + z + 3 = 0. Gọi M (a; b; c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Đáp án chính xác
Trả lời:
Mặt (S) cầu có tâm I (1;2;3), R=3.
mặt phẳng (P) cắt mặt cầu (S) theo một đường tròn
Gọi M (a;b;c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất.
Khi M thuộc đường thẳng Δ đi qua I và vuông góc với (P)
Vậy M (3;0;4). Khi đó a + b + c = 7.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng ∆:x-6-3=y-22=z-22. Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
A.x – 2y + 2z – 1 = 0.
B.2x + 2y + z – 18 = 0.
C.2x – y – 2z – 10 = 0.
D.2x + y + 2z – 19 = 0.
Đáp án chính xác
Trả lời:
Chọn D
Gọi vectơ pháp tuyến của mặt phẳng (P) là , a²+b²+c²>0.
Phương trình mặt phẳng (P): a(x-4)+b (y-3)+c (z-4)=0.
Do (P) // Δ nên -3a+2b+2c=0 => 3a = 2 (b + c)
Mặt phẳng (P) tiếp xúc với (S) nên
Thay 3a=2 (c+b ) vào (*) ta được:
TH1: 2b-c=0, chọn b=1; c=2 => a = 2 => (P): 2x+y+2z-19=0 (thỏa).
TH2: b-2c=0, chọn c=1; b=2 => a = 2 => (P): 2x+2y+z-18=0 (loại do Δ ⊂ (P))====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto u→=a, b, c làm vectơ chỉ phương và song song với mặt phẳng (P): 2x + y + z = 0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho các điểm M (2;2; -3) và N (-4; 2; 1). Gọi Δ là đường thẳng đi qua M, nhận vecto làm vectơ chỉ phương và song song với mặt phẳng (P): 2x + y + z = 0 sao cho khoảng cách từ N đến Δ đạt giá trị nhỏ nhất. Biết |a|, |b| là hai số nguyên tố cùng nhau. Khi đó |a| + |b| + |c| bằng:
A. 15
Đáp án chính xác
B. 13
C. 16
D. 14
Trả lời:
Chọn A
Gọi (Q) là mặt phẳng đi qua M (2;2; -3) và song song với mặt phẳng (P).
Suy ra (Q):2x + y + z – 3 = 0.
Do Δ // (P) nên Δ ⊂ (Q).
d(N, Δ) đạt giá trị nhỏ nhất ó Δ đi qua N’, với N’ là hình chiếu của N lên (Q).
Gọi d là đường thẳng đi qua N và vuông góc (P),
Ta có N’ ∈ d => N’ (-4 + 2t; 2 + t; 1 + t); N’ ∈ (Q) => t =
cùng phương
Do |a|, |b| nguyên tố cùng nhau nên chọn
Vậy |a| + |b| + |c| = 15.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho hai điểm A (1;0;0), B (0;0;2) và mặt cầu (S): x²+y²+z²-2x-2y+1=0. Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với (S).
Câu hỏi:
Trong không gian Oxyz, cho hai điểm A (1;0;0), B (0;0;2) và mặt cầu (S): x²+y²+z²-2x-2y+1=0. Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với (S).
A.3.
B. 0
C. 1
Đáp án chính xác
D. 2
Trả lời:
Chọn C
Gọi (P) là mặt phẳng thỏa mãn bài toán.
Ta có A (1; 0; 0) ∈ (S) => nếu tồn tại (P) thì (P) tiếp xúc với (S) tại A.
Ta thấy B (0; 0 ; 2) ∈ (P)
Nên có duy nhất một mặt phẳng (P) thỏa mãn bài toán.
Ghi chú: Bài toán dạng này thường thì sẽ có hai mặt phẳng thỏa mãn, nhưng với số liệu của bài này thì chỉ có một mặt phẳng thỏa mãn bài toán.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.
Câu hỏi:
Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.
A. -3
B. -2
C. 2
D. 3
Đáp án chính xác
Trả lời:
Chọn DGọi G (2;2;-2) là trọng tâm tam giác ABC, khi đó Ta có:đạt giá trị nhỏ nhất khi M là hình chiếu vuông góc của G trên mặt phẳng (P). Khi đó tọa độ của M (a;b;c) và vecto cùng phương với vecto pháp tuyến n (1;-2;2) thỏa mãn hệ Vậy a+b+c=3.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian tọa độ Oxyz cho A (1; 1; -1), B (2; 3; 1), C (5; 5; 1). Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (Oxy) tại M (a; b; 0). Tính 3b-a.
Câu hỏi:
Trong không gian tọa độ Oxyz cho A (1; 1; -1), B (2; 3; 1), C (5; 5; 1). Đường phân giác trong góc A của tam giác ABC cắt mặt phẳng (Oxy) tại M (a; b; 0). Tính 3b-a.
A. 6.
B. 5.
Đáp án chính xác
C. 3.
D. 0.
Trả lời:
Chọn B
Ta có AB=3, AC=6. Gọi I (x; y; z) là điểm thuộc cạnh BC sao cho AI là phân giác trong của góc A
Phương trình mặt phẳng (Oxy) là: z=0.
Giao điểm của đường thẳng AI với mặt phẳng (Oxy) là M (2; 7/3; 0)
Vậy 3b-a=5.====== **** mời các bạn xem câu tiếp bên dưới **** =====