Câu hỏi:
Kí hiệu \({z_1},{\rm{ }}{z_2}\) là hai nghiệm phức của phương trình \({z^2} + \left( {1 – 2i} \right)z – 1 – i = 0.\) Giá trị của \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\) bằng
A. \(2 + \sqrt 2 .\)
B. \(1 + \sqrt 2 .\)
Đáp án chính xác
C. \(2 + \sqrt 5 .\)
D. \(1 + \sqrt 5 .\)
Trả lời:
Đáp án B
Ta có \(\Delta = {\left( {1 – 2i} \right)^2} + 4\left( {1 + i} \right) = 1 \Rightarrow \left[ \begin{array}{l}1z = \frac{{ – 1 + 2i + 1}}{2} = i\\z = \frac{{ – 1 + 2i – 1}}{2} = – 1 + i\end{array} \right.\).
\( \Rightarrow \left| {{z_1}} \right| + \left| {{z_2}} \right| = \left| i \right| + \left| { – 1 + i} \right| = 1 + \sqrt 2 \).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + 2y – 3z + 3 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):x + 2y – 3z + 3 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A. \(\vec n = \left( {1; – 2;3} \right).\)
B. \(\vec n = \left( {1;2; – 3} \right).\)
Đáp án chính xác
C. \(\vec n = \left( { – 1;2; – 3} \right).\)
D. \(\vec n = \left( {1;2;3} \right).\)
Trả lời:
Đáp án B
Mặt phẳng \(\left( P \right):x + 2y – 3z + 3 = 0\) có một VTPT là \(\overrightarrow n = \left( {1;2; – 3} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a và b là hai số thực dương tùy ý. Mệnh đề nào dưới đây là đúng?
Câu hỏi:
Cho a và b là hai số thực dương tùy ý. Mệnh đề nào dưới đây là đúng?
A. \(\ln \left( {a{b^3}} \right) = \ln a + \frac{1}{3}\ln b.\)
B. \(\ln \left( {a{b^3}} \right) = \ln a – \frac{1}{3}\ln b.\)
C. \(\ln \left( {a{b^3}} \right) = \ln a + 3\ln b.\)
Đáp án chính xác
D. \(\ln \left( {a{b^3}} \right) = \ln a – 3\ln b.\)
Trả lời:
Đáp án C
Ta có \(\ln \left( {a{b^3}} \right) = \ln a + \ln {b^3} = \ln a + 3\ln b\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?A. \(\left( {1;2} \right).\)
B. \(\left( { – \infty ;1} \right).\)
Đáp án chính xác
C. \(\left( {1; + \infty } \right).\)
D. \(\left( { – \infty ;5} \right).\)
Trả lời:
Đáp án B
Hàm số \(f\left( x \right)\) đồng biến trên \(\left( { – \infty ;1} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {0;2} \right]\) và \(f\left( 0 \right) = – 1;{\rm{ }}f\left( 2 \right) = 2.\) Tích phân \(\int\limits_0^2 {f'\left( x \right)dx} \) bằng
Câu hỏi:
Cho hàm số \(f\left( x \right)\) có đạo hàm trên đoạn \(\left[ {0;2} \right]\) và \(f\left( 0 \right) = – 1;{\rm{ }}f\left( 2 \right) = 2.\) Tích phân \(\int\limits_0^2 {f’\left( x \right)dx} \) bằng
A. −1.
B. 1.
C. −3.
D. 3.
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(\int\limits_0^2 {f’\left( x \right)dx} = f\left( x \right)\left| \begin{array}{l}^2\\_0\end{array} \right. = f\left( 2 \right) – f\left( 0 \right) = 3\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính môđun của số phức z thỏa mãn \(z\left( {1 – i} \right) + 2i = 1.\)
Câu hỏi:
Tính môđun của số phức z thỏa mãn \(z\left( {1 – i} \right) + 2i = 1.\)
A. \(\frac{{\sqrt 5 }}{2}.\)
B. \(\frac{{\sqrt {13} }}{2}.\)
C. \(\frac{{\sqrt {10} }}{2}.\)
Đáp án chính xác
D. \(\frac{{\sqrt {17} }}{2}.\)
Trả lời:
Đáp án C
Ta có \(z = \frac{{1 – 2i}}{{1 – i}} = \frac{3}{2} – \frac{1}{2}i \Rightarrow \left| z \right| = \sqrt {{{\left( {\frac{3}{2}} \right)}^2} + {{\left( { – \frac{1}{2}} \right)}^2}} = \frac{{\sqrt {10} }}{2}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====