Câu hỏi:
Gọi tên hình tròn xoay biết nó sinh ra bởi nửa đường tròn khi quay quanh trục quay là đường kính của nửa đường tròn đó
A. Hình tròn
B. Khối cầu
C. Mặt cầu
Đáp án chính xác
D. Mặt trụ
Trả lời:
Đáp án C.Khi quay nửa đường tròn quanh trục quay là đường kính của nó thì ta thu được một mặt cầu.Phân tích phương án nhiễu:Phương án A: Khi quay một hình quanh một trục, ta thu được một khối tròn xoay trong không gian, còn hình tròn được xác định trên một mặt phẳng nên loại A.Phương án B: Chỉ khi quay nửa hình tròn quanh đường kính của nó, ta mới thu được một khối cầu.Phương án C: Mặt trụ chỉ thu được khi ta quay 3 cạnh của một hình chữ nhật quanh cạnh còn lại.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số y=f(x). Mệnh đề nào sau đây là đúng?
Câu hỏi:
Hàm số y=f(x). Mệnh đề nào sau đây là đúng?
A.
Đáp án chính xác
B.
C. f(x) Đồng biến trên khoảng
D. f(x) nghịch biến trên
Trả lời:
Đáp án A.
Theo định lý trong SGK cơ bản 12 trang 6, ta có “ Nếu f ‘ (x) với mọi x thuộc K thì hàm số f (x) đồng biến trên K’’. Vậy đáp án A đúng
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tìm phương trình đường tiệm cận ngang của đồ thị hàm số y=3x+2x+1.
Câu hỏi:
Tìm phương trình đường tiệm cận ngang của đồ thị hàm số
A. x = -1
B. x=1
C. y=3
Đáp án chính xác
D. y=2
Trả lời:
Đáp án C.Đồ thị hàm số có đường tiệm cận đứng là x = – 1, đường tiện cận ngang y =3.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số y=x4−4×2+4 đạt cực tiểu tại những điểm nào?
Câu hỏi:
Hàm số đạt cực tiểu tại những điểm nào?
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Đáp án BTa có Ta thấy hệ số a = 1 > 0 nên đồ thị hàm số có dạng chữ W. Lập bảng biến thiên, ta xác định các điểm cực tiểu có hàm số là
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số giao điểm của hai đồ thị hàm số f(x)=2(m+1)x3+2mx3−2(m+1)x−2m, (m là tham số khác −34) và g(x)=−x4+x2 là
Câu hỏi:
Số giao điểm của hai đồ thị hàm số , (m là tham số khác ) và là
A.3
B.4
Đáp án chính xác
C.2
D.1
Trả lời:
Đáp án BPhương trình hoành độ giao điểm của hai hàm số là: Xét Suy ra phương trình (*) luôn có hai nghiệm phân biệt khác , với Vậy hai đồ thị f(x) và g(x) cắt nhau tại 4 điểm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho các số thực dương a,b thỏa mãn a23>a35 và logb23<logb35. Khẳng định nào sau đây là đúng?
Câu hỏi:
Cho các số thực dương a,b thỏa mãn và . Khẳng định nào sau đây là đúng?
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Đáp án CCách 1: Tư duy tự luậnTa có và Vậy Cách 2: Sử dụng máy tính cầm tayChọn các giá trị Ta chọn được các giá trị a =1,5 và b = 0,3 thỏa mãn điều kiện. Ấn tiếp Vậy và
====== **** mời các bạn xem câu tiếp bên dưới **** =====