Câu hỏi:
Đáy của lăng trụ đứng tam giác ABC.A’B’C’ là tam giác\(ABC\) vuông cân tại \(A\) có cạnh \(BC = a\sqrt 2 \) và biết Tính thể tích khối lăng trụ.
A.\(2{a^3}.\)
B. \({a^3}.\)
C.\({a^3}\sqrt 2 .\)
Đáp án chính xác
D.\({a^3}\sqrt 3 .\)
Trả lời:
Đáp án C.
Xét tam giác \(ABC\) vuông cân tại \(A\) có \(AB = AC = \frac{{BC}}{{\sqrt 2 }} = a.\)
Diện tích tam giác \(ABC\) bằng: \({S_{ABC}} = \frac{1}{2}.AB.AC = \frac{{{a^2}}}{2}.\)
Xét tam giác \(BAA’\) vuông tại \(A\) ta có: \(A’A = \sqrt {A'{B^2} – A{B^2}} = \sqrt {{{\left( {3a} \right)}^2} – {a^2}} = 2\sqrt 2 a.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các khẳng định dưới đây, khẳng định nào sai?
Câu hỏi:
Trong các khẳng định dưới đây, khẳng định nào sai?
A.\(\int\limits_{}^{} {kf\left( x \right)dx} = k\int\limits_{}^{} {f\left( x \right)dx} ,\left( {\forall k \ne 0} \right).\)
B.\(\int\limits_{}^{} {f’\left( x \right)dx} = f\left( x \right) + C.\)
C.\(\int\limits_{}^{} {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} \pm \int\limits_{}^{} {g\left( x \right)dx} .\)
D. \(\int\limits_{}^{} {\left[ {f\left( x \right).g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} .\int\limits_{}^{} {g\left( x \right)dx} .\)
Đáp án chính xác
Trả lời:
Đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({3^x} \le 9\) là
Câu hỏi:
Tập nghiệm của bất phương trình \({3^x} \le 9\) là
A.\(\left( { – \infty ;2} \right).\)
B.\(\left( {2; + \infty } \right).\)
C.\(\left( { – \infty ; – 2} \right].\)
Đáp án chính xác
D. \(\left[ {2; + \infty } \right).\)
Trả lời:
Đáp án C.
Ta có \({3^x} \le 9 \Leftrightarrow {3^x} \le {3^2} \Leftrightarrow x \le 2.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
Câu hỏi:
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
A. 6.
B. 2.
C. 4.
Đáp án chính xác
D. 16.
Trả lời:
Đáp án C.
Ta có \(y’ = 3{x^2} – 3x,y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)
\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?A.\(\left( {2; + \infty } \right).\)
B.\(\left( { – \infty ;0} \right).\)
C.\(\left( { – 2;2} \right).\)
D. \(\left( {0;2} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D.
Dựa vào đồ thị, ta thấy hàm số đồng biến trên các khoảng \(\left( {0;2} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
Câu hỏi:
Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
A. \(36\pi .\)
Đáp án chính xác
B. \(4\pi .\)
C. \(12\pi .\)
D. \(108\pi .\)
Trả lời:
Đáp ánA.
Thể tích khối cầu đã cho bằng: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.3^3} = 36\pi .\)====== **** mời các bạn xem câu tiếp bên dưới **** =====