Câu hỏi:
Có bao nhiêu giá trị nguyên của m để bất phương trình \({\log _2}\left( {7{x^2} + 7} \right) \ge {\log _2}\left( {m{x^2} + 4x + m} \right)\) nghiệm đúng với mọi x.
A. 5.
B. 4.
C. 0.
D. 3.
Đáp án chính xác
Trả lời:
Đáp án D
\({\log _2}\left( {7{{\rm{x}}^2} + 7} \right) \ge {\log _2}\left( {m{{\rm{x}}^2} + 4{\rm{x}} + m} \right) \Leftrightarrow \left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0\\7{{\rm{x}}^2} + 7 \ge m{{\rm{x}}^2} + 4{\rm{x}} + m\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0\\\left( {7 – m} \right){x^2} – 4{\rm{x}} + 7 – m \ge 0\end{array} \right.\).
Bất phương trình \({\log _2}\left( {7{{\rm{x}}^2} + 7} \right) \ge {\log _2}\left( {m{{\rm{x}}^2} + 4{\rm{x}} + m} \right)\) nghiệm đúng với mọi x khi và chi khi
\(\left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0{\rm{ }}\left( 1 \right)\\\left( {7 – m} \right){x^2} – 4{\rm{x}} + 7 – m \ge 0{\rm{ }}\left( 2 \right)\end{array} \right.\) nghiệm đúng với mọi x thực.
Khi \(m = 0\) thì (1) trở thành \(4{\rm{x}} > 0 \Leftrightarrow x > 0 \Rightarrow m = 0\) không thỏa mãn.
Khi \(m = 7\) thì (2) trở thành \( – 4{\rm{x}} \ge 0 \Leftrightarrow x \le 0 \Rightarrow m = 7\) không thỏa mãn.
Hệ bất phương trình \(\left\{ \begin{array}{l}m{{\rm{x}}^2} + 4{\rm{x}} + m > 0{\rm{ }}\left( 1 \right)\\\left( {7 – m} \right){x^2} – 4{\rm{x}} + 7 – m \ge 0{\rm{ }}\left( 2 \right)\end{array} \right.\) nghiệm đúng với mọi x khi
\(\left\{ \begin{array}{l}m > 0\\4 – {m^2} < 0\\7 – m > 0\\4 – {\left( {7 – m} \right)^2} \le 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0 < m < 7\\\left[ \begin{array}{l}m > 2\\m < – 2\end{array} \right.\\\left[ \begin{array}{l}m \ge 9\\m \le 5\end{array} \right.\end{array} \right. \Leftrightarrow 2 < m \le 5\). Do \(m \in \mathbb{Z}\) nên \(m \in \left\{ {3;4;5} \right\}\) nên có 3 giá trị.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ
Câu hỏi:
Từ một nhóm có 10 học sinh nam và 15 học sinh nữ. Hỏi có bao nhiêu cách chọn ra 2 học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biễu diễn văn nghệ
A. \(C_{25}^5.\)
B. \(C_{10}^2C_{15}^3.\)
Đáp án chính xác
C. \(C_{10}^2 + C_{15}^3.\)
D. \(A_{10}^2.A_{15}^3.\)
Trả lời:
Đáp án B
Chọn ra 2 học sinh nam có \(C_{10}^2\) cách, chọn ra 3 học sinh nữ có \(C_{15}^3\) cách.
Theo quy tắc nhân có \(C_{10}^2.C_{15}^3\) cách để chọn ra 2học sinh nam và 3 học sinh nữ để lập thành một đội 5 bạn đi biểu diễn văn nghệ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz cho mặt phẳng \((P):2x – y + z – 1 = 0\) đi qua điểm nào sau đây?
Câu hỏi:
Trong không gian Oxyz cho mặt phẳng \((P):2x – y + z – 1 = 0\) đi qua điểm nào sau đây?
A. \(P(1; – 2;0).\)
B. \(M(2; – 1;1).\)
C. \(Q(1; – 3; – 4).\)
Đáp án chính xác
D. \(N(0;1; – 2).\)
Trả lời:
Đáp án C
Thay lần lượt tọa độ điểm M, N, P, Q vào mặt phẳng \(\left( P \right):2{\rm{x}} – y + z – 1 = 0\) ta được:
\(P\left( {1; – 2;0} \right) \to 2.1 – \left( { – 2} \right) + 0 – 1 = – 1 \ne 0 \to P \notin \left( P \right)\)
\(M\left( {2; – 1;1} \right) \to 2.2 – \left( { – 1} \right) + 1 – 1 = 5 \ne 0 \to M \notin \left( P \right)\)
\(Q\left( {1; – 3; – 4} \right) \to 2.1 – \left( { – 3} \right) – 4 – 1 = 0 \to Q \in \left( P \right)\)
\(N\left( {0;1; – 2} \right) \to 2.0 – 1 – 2 – 1 = – 4 \ne 0 \to N \notin \left( P \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Lăng trụ có chiều cao bằng a đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\) .Cạnh góc vuông của đáy lăng trụ bằng
Câu hỏi:
Lăng trụ có chiều cao bằng a đáy là tam giác vuông cân và có thể tích bằng \(2{a^3}\) .Cạnh góc vuông của đáy lăng trụ bằng
A. \(3a.\)
B. \(2a.\)
Đáp án chính xác
C. \(a.\)
D. \(4a.\)
Trả lời:
Đáp án B
Giả sử đáy của lăng trụ đã cho là tam giác ABC vuông cân tại A.
Khi đó \({S_{ABC}} = \frac{{2{{\rm{a}}^3}}}{a} = 2{{\rm{a}}^2} \Leftrightarrow \frac{1}{2}A{B^2} = 2{{\rm{a}}^2} \Leftrightarrow AB = 2{\rm{a}}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho số phức \(z = 1 + 2i\) . Tìm tổng phần thực và phần ảo của số phức \(w = 2z + \bar z\) .
Câu hỏi:
Cho số phức \(z = 1 + 2i\) . Tìm tổng phần thực và phần ảo của số phức \(w = 2z + \bar z\) .
A. 3.
B. 5.
Đáp án chính xác
C. 1.
D. 2.
Trả lời:
Đáp án B
\({\rm{w}} = 2{\rm{z}} + \overline z = 2\left( {1 + 2i} \right) + \left( {1 – 2i} \right) = 3 + 2i\).
Suy ra, phần thực của số phức \({\rm{w}} = 2{\rm{z}} + \overline z \) là 3; phần ảo của số phức \({\rm{w}} = 2{\rm{z}} + \overline z \) là 2.
Do đó, tổng phần thực và phần ảo của số phức \({\rm{w}} = 2{\rm{z}} + \overline z \) là 5.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y + 2}}{{ – 1}} = \frac{{z – 4}}{2}\) cắt mặt phẳng \(\left( {Oxy} \right)\)tại điểm có tọa độ là
Câu hỏi:
Trong không gian Oxyz, đường thẳng \(d:\frac{{x – 3}}{1} = \frac{{y + 2}}{{ – 1}} = \frac{{z – 4}}{2}\) cắt mặt phẳng \(\left( {Oxy} \right)\)tại điểm có tọa độ là
A. \(\left( { – 1;0;0} \right).\)
B. \(\left( { – 3;2;0} \right).\)
C. \(\left( {1;0;0} \right).\)
Đáp án chính xác
D. \(\left( {3; – 2;0} \right).\)
Trả lời:
Đáp án C
Ta có \(d:\left\{ \begin{array}{l}x = 3 + t\\y = – 2 – t\\z = 4 + 2t\end{array} \right.\) nên đồ thị hàm số cắt \(\left( {Oxy} \right)\) tại \(\left( {1;0;0} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====