Câu hỏi:
Cho khối lăng trụ tam giác \(ABC.A’B’C’\) gọi \(I,J,K\) lần lượt là trung điểm của \(AB,AA’,B’C’.\) Mặt phẳng \(\left( {IJK} \right)\) chia khối lăng trụ thành 2 phần. Gọi \({V_1}\) là thể tích phần chứa điểm \(B’,V\) là thể tích khối lăng trụ. Tính \(\frac{{{V_1}}}{V}.\)
A. \(\frac{{49}}{{144}}.\)
Đáp án chính xác
B.\(\frac{{95}}{{144}}.\)
C. \(\frac{1}{2}.\)
D. \(\frac{{46}}{{95}}.\)
Trả lời:
Đáp án A.
Ta thấy thiết diện của \(\left( {IJK} \right)\) và lăng trụ như hình vẽ.
Ta có \(IB//EB’ \Rightarrow \frac{{FI}}{{FE}} = \frac{{FB}}{{FB’}} = \frac{{FH}}{{FK}} = \frac{{IB}}{{EB’}} = \frac{1}{3}.\)
Ba điểm \(E,G,K\) thẳng hàng nên \(\frac{{EA’}}{{EB’}}.\frac{{KB’}}{{KC’}}.\frac{{GC’}}{{GA’}} = 1 \Rightarrow GC’ = 3GA’.\)
Ba điểm \(A’,G,C’\) thẳng hàng nên \(\frac{{A’E}}{{A’B’}}.\frac{{C’B’}}{{C’K}}.\frac{{GK}}{{GE}} = 1 \Rightarrow GK = GE.\)
Ta có \(\frac{{{S_{EB’K}}}}{{{S_{A’B’C’}}}} = \frac{{EB’.d\left( {K,A’B’} \right)}}{{A’B’.d\left( {C’,A’B’} \right)}} = \frac{3}{4}\)
\( \Rightarrow {V_{F.EB’K}} = \frac{1}{3}{S_{EB’K}}.d\left( {F,\left( {A’B’C’} \right)} \right) = \frac{1}{3}.\frac{3}{4}{S_{A’B’C’}}.\frac{3}{2}d\left( {B,\left( {A’B’C’} \right)} \right) = \frac{{3V}}{8}.\)
\(\frac{{{V_{FIBH}}}}{{{V_{FEB’K}}}} = {\left( {\frac{1}{3}} \right)^3} = \frac{1}{{27}} \Rightarrow {V_{FIBH}} = \frac{1}{{27}}.\frac{{3V}}{8} = \frac{V}{{72}}.\)
\(\frac{{{V_{EJA’G}}}}{{{V_{FEB’K}}}} = \frac{{EA’}}{{EB’}}.\frac{{EJ}}{{EF}}.\frac{{EG}}{{EK}} = \frac{1}{{18}} \Rightarrow {V_{FIBH}} = \frac{1}{{18}}.\frac{{3V}}{8} = \frac{V}{{48}}.\)
\( \Rightarrow {V_1} = \frac{{3V}}{8} – \frac{V}{{48}} – \frac{V}{{72}} = \frac{{49V}}{{144}} \Rightarrow \frac{{{V_1}}}{V} = \frac{{49}}{{144}}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các khẳng định dưới đây, khẳng định nào sai?
Câu hỏi:
Trong các khẳng định dưới đây, khẳng định nào sai?
A.\(\int\limits_{}^{} {kf\left( x \right)dx} = k\int\limits_{}^{} {f\left( x \right)dx} ,\left( {\forall k \ne 0} \right).\)
B.\(\int\limits_{}^{} {f’\left( x \right)dx} = f\left( x \right) + C.\)
C.\(\int\limits_{}^{} {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} \pm \int\limits_{}^{} {g\left( x \right)dx} .\)
D. \(\int\limits_{}^{} {\left[ {f\left( x \right).g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} .\int\limits_{}^{} {g\left( x \right)dx} .\)
Đáp án chính xác
Trả lời:
Đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({3^x} \le 9\) là
Câu hỏi:
Tập nghiệm của bất phương trình \({3^x} \le 9\) là
A.\(\left( { – \infty ;2} \right).\)
B.\(\left( {2; + \infty } \right).\)
C.\(\left( { – \infty ; – 2} \right].\)
Đáp án chính xác
D. \(\left[ {2; + \infty } \right).\)
Trả lời:
Đáp án C.
Ta có \({3^x} \le 9 \Leftrightarrow {3^x} \le {3^2} \Leftrightarrow x \le 2.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
Câu hỏi:
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
A. 6.
B. 2.
C. 4.
Đáp án chính xác
D. 16.
Trả lời:
Đáp án C.
Ta có \(y’ = 3{x^2} – 3x,y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)
\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?A.\(\left( {2; + \infty } \right).\)
B.\(\left( { – \infty ;0} \right).\)
C.\(\left( { – 2;2} \right).\)
D. \(\left( {0;2} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D.
Dựa vào đồ thị, ta thấy hàm số đồng biến trên các khoảng \(\left( {0;2} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
Câu hỏi:
Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
A. \(36\pi .\)
Đáp án chính xác
B. \(4\pi .\)
C. \(12\pi .\)
D. \(108\pi .\)
Trả lời:
Đáp ánA.
Thể tích khối cầu đã cho bằng: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.3^3} = 36\pi .\)====== **** mời các bạn xem câu tiếp bên dưới **** =====