Câu hỏi:
Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình thang vuông tại \(A\) và \(B\). Hai mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với đáy. Biết \(AD = 2BC = 2a\) và \(BD = a\sqrt 5 .\) Tính thể tích khối chóp \(S.ABCD\) biết rằng góc giữa \(SB\) và \(\left( {ABCD} \right)\) bằng \({30^0}\)?
A.\({V_{S.ABCD}} = \frac{{{a^3}\sqrt 3 }}{8}.\)
B. \({V_{S.ABCD}} = \frac{{{a^3}\sqrt 3 }}{6}.\)
Đáp án chính xác
C.\({V_{S.ABCD}} = \frac{{4{a^3}\sqrt {21} }}{9}\).
D.\({V_{S.ABCD}} = \frac{{2{a^3}\sqrt {21} }}{3}\).
Trả lời:
Đáp án B.
Vì \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABCD} \right)\\\left( {SAD} \right) \bot \left( {ABCD} \right)\\\left( {SAB} \right) \cap \left( {SAD} \right) = SA\end{array} \right. \Rightarrow SA \bot \left( {ABCD} \right)\)
Ta có: \(AB = \sqrt {B{D^2} – A{D^2}} = \sqrt {{{\left( {a\sqrt 5 } \right)}^2} – {{\left( {2a} \right)}^2}} = a\)
\(SA = AB\tan {30^0} = \frac{{a\sqrt 3 }}{3}\)
\({S_{ABCD}} = \frac{{\left( {AD + BC} \right).AB}}{2} = \frac{{\left( {2a + a} \right).a}}{2} = \frac{{3{a^2}}}{2}\)
Thể tích khối chóp \(S.ABCD\) là:
\(V = \frac{1}{3}SA.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{3}.\frac{{3{a^2}}}{2} = \frac{{{a^3}\sqrt 3 }}{6}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các khẳng định dưới đây, khẳng định nào sai?
Câu hỏi:
Trong các khẳng định dưới đây, khẳng định nào sai?
A.\(\int\limits_{}^{} {kf\left( x \right)dx} = k\int\limits_{}^{} {f\left( x \right)dx} ,\left( {\forall k \ne 0} \right).\)
B.\(\int\limits_{}^{} {f’\left( x \right)dx} = f\left( x \right) + C.\)
C.\(\int\limits_{}^{} {\left[ {f\left( x \right) \pm g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} \pm \int\limits_{}^{} {g\left( x \right)dx} .\)
D. \(\int\limits_{}^{} {\left[ {f\left( x \right).g\left( x \right)} \right]dx} = \int\limits_{}^{} {f\left( x \right)dx} .\int\limits_{}^{} {g\left( x \right)dx} .\)
Đáp án chính xác
Trả lời:
Đáp án D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({3^x} \le 9\) là
Câu hỏi:
Tập nghiệm của bất phương trình \({3^x} \le 9\) là
A.\(\left( { – \infty ;2} \right).\)
B.\(\left( {2; + \infty } \right).\)
C.\(\left( { – \infty ; – 2} \right].\)
Đáp án chính xác
D. \(\left[ {2; + \infty } \right).\)
Trả lời:
Đáp án C.
Ta có \({3^x} \le 9 \Leftrightarrow {3^x} \le {3^2} \Leftrightarrow x \le 2.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
Câu hỏi:
Gọi \(M\) và \(m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} – 3x + 2\) trên đoạn \(\left[ {0;2} \right].\) Khi đó tổng \(M + m\) bằng
A. 6.
B. 2.
C. 4.
Đáp án chính xác
D. 16.
Trả lời:
Đáp án C.
Ta có \(y’ = 3{x^2} – 3x,y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0 \in \left[ {0;2} \right]\\x = 1 \in \left[ {0;2} \right]\end{array} \right.\)
\(y\left( 0 \right) = 2,y\left( 2 \right) = 4,y\left( 1 \right) = 0,\) vậy \(M = 4;m = 0\), do đó \(M + m = 4.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( x \right)\) đồng biến trên khoảng nào dưới đây?A.\(\left( {2; + \infty } \right).\)
B.\(\left( { – \infty ;0} \right).\)
C.\(\left( { – 2;2} \right).\)
D. \(\left( {0;2} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D.
Dựa vào đồ thị, ta thấy hàm số đồng biến trên các khoảng \(\left( {0;2} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
Câu hỏi:
Cho khối cầu có bán kính \(R = 3\). Thể tích khối cầu đã cho bằng
A. \(36\pi .\)
Đáp án chính xác
B. \(4\pi .\)
C. \(12\pi .\)
D. \(108\pi .\)
Trả lời:
Đáp ánA.
Thể tích khối cầu đã cho bằng: \(V = \frac{4}{3}\pi {R^3} = \frac{4}{3}\pi {.3^3} = 36\pi .\)====== **** mời các bạn xem câu tiếp bên dưới **** =====