Câu hỏi:
Cho khối chóp S.ABCcó hai điểm \(M,{\rm{ }}N\) lần lượt thuộc hai cạnh \(SA,{\rm{ }}SB\) sao cho \(MA = 2MS,{\rm{ }}NS = 2NB.\) Mặt phẳng \(\left( \alpha \right)\) qua hai điểm M, N và song song với SC chia khối chóp thành hai khối đa diện. Tính tỉ số thể tích t của hai khối đa diện đó, biết \(t < 1.\)
A.\(\frac{3}{5}\).
B.\(\frac{4}{9}\).
C.\(\frac{3}{4}\).
D.\(\frac{4}{5}\).
Đáp án chính xác
Trả lời:
Lời giải:
Chọn đáp án D
Thiết diện là tứ giác MNPQnhư hình vẽ với \(NP{\rm{ // MQ // SC}}\).
Ta có \({V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}}\).
+ \({V_{N.ABPQ}} = \frac{1}{3}d\left( {N;\left( {ABC} \right)} \right).{S_{ABPQ}} = \frac{1}{3}.\frac{1}{3}d\left( {S;\left( {ABC} \right)} \right).\left( {{S_{ABC}} – {S_{CPQ}}} \right).\)
+ \(\frac{{{S_{CPQ}}}}{{{S_{CBA}}}} = \frac{{CP}}{{CB}}.\frac{{CQ}}{{CA}} = \frac{2}{3}.\frac{1}{3} \Rightarrow {S_{CPQ}} = \frac{2}{9}{S_{ABC}} \Rightarrow {V_{N.ABPQ}} = \frac{1}{9}d\left( {S;\left( {ABC} \right)} \right).\frac{7}{9}{S_{ABC}} = \frac{7}{{27}}{V_{S.ABC}}.\)
\({V_{N.AMQ}} = \frac{1}{3}d\left( {N;\left( {AMQ} \right)} \right).{S_{AMQ}} = \frac{1}{3}.\frac{2}{3}d\left( {B;\left( {SAC} \right)} \right).\frac{4}{9}{S_{SAC}} = \frac{8}{{27}}{V_{S.ABC}}\)
\( \Rightarrow {V_{MNABPQ}} = {V_{N.ABPQ}} + {V_{N.AMQ}} = \frac{5}{9}{V_{S.ABCD}} \Rightarrow {V_{SMNPCQ}} = \frac{4}{9}{V_{S.ABCD}} \Rightarrow t = \frac{{{V_{SMNPCQ}}}}{{{V_{MNABPQ}}}} = \frac{4}{5}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz,cho mặt phẳng \(\left( P \right):x – 6y + 12z – 5 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Câu hỏi:
Trong không gian Oxyz,cho mặt phẳng \(\left( P \right):x – 6y + 12z – 5 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A.\(\vec n = \left( {1; – 6;12} \right).\)
Đáp án chính xác
B.\(\vec n = \left( {1;6;12} \right).\)
C.\(\vec n = \left( { – 1;6;12} \right).\)
D.\(\vec n = \left( {1;6; – 12} \right).\)
Trả lời:
Lời giải:
Chọn đáp án A
Mặt phẳng \(\left( P \right):x – 6y + 12{\rm{z}} – 5 = 0\)có một VTPT là \(\overrightarrow n = \left( {1; – 6;12} \right)\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?A.\(\left( { – 1;0} \right).\)
Đáp án chính xác
B.\(\left( {0;1} \right).\)
C.\(\left( {0; + \infty } \right).\)
D.\(\left( { – 1;1} \right).\)
Trả lời:
Lời giải:
Chọn đáp án A
Hàm số \(f\left( x \right)\)đồng biến trên \(\left( { – 1;0} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là
Câu hỏi:
Cho hàm số f(x) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho làA.0.
B.9.
Đáp án chính xác
C.−7.
D.2.
Trả lời:
Lời giải:
Chọn đáp án B
Giá trị cực đại của hàm số \(f\left( x \right)\)là 9.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 – 3i.\) Số phức \(w = {z_1} – {z_2}\) có phần ảo bằng
Câu hỏi:
Cho hai số phức \({z_1} = 1 + 2i,{\rm{ }}{z_2} = 2 – 3i.\) Số phức \(w = {z_1} – {z_2}\) có phần ảo bằng
A.5.
Đáp án chính xác
B.1.
C.\( – 5.\)
D.\(5i.\)
Trả lời:
Lời giải:
Chọn đáp án A
Số phức \({\rm{w}} = {z_1} – {z_2} = – 1 + 5i\)có phần ảo bằng 5.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \(a,{\rm{ }}b,{\rm{ }}x\) là các số thực dương tùy ý thỏa mãn \({\log _2}x = 2{\log _2}a + 3{\log _2}b.\) Mệnh đề nào dưới đây là đúng?
Câu hỏi:
Cho \(a,{\rm{ }}b,{\rm{ }}x\) là các số thực dương tùy ý thỏa mãn \({\log _2}x = 2{\log _2}a + 3{\log _2}b.\) Mệnh đề nào dưới đây là đúng?
A.\(x = {a^2}{b^3}.\)
Đáp án chính xác
B.\(x = {a^2} + {b^3}.\)
C.\(x = 2a + 3b.\)
D.\(x = 3a + 2b.\)
Trả lời:
Lời giải:
Chọn đáp án A
Ta có \({\log _2}x = 2{\log _2}a + 3{\log _2}b = {\log _2}{a^2} + {\log _2}{b^3} = {\log _2}\left( {{a^2}{b^3}} \right) \Rightarrow x = {a^2}{b^3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====