Câu hỏi:
Cho hình chóp S. ABCD có đáy là hình chữ nhật, AB = a, AD = a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của BC, SH = . Tính bán kính mặt cầu ngoại tiếp hình chóp S. BHD.
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Chọn B
Gọi R và r lần lượt là bán kính mặt cầu ngoại tiếp hình chóp S. BHD và tam giác BHD.
Ta có HB=,
Áp dụng định lí Cô sin, ta có
Diện tích tam giác BHD là
Do đó
Gọi O là tâm đường tròn ngoại tiếp tam giác BHD và M là trung điểm SH. Mặt phẳng trung trực của SH cắt trục đường tròn ngoại tiếp tam giác BHD tại E. Khi đó E là tâm mặt cầu cần tìm.
Ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hình lăng trụ ABC. A'B'C' có đáy ABC là tam giác vuông tại A; AB=1; AC=2. Hình chiếu vuông góc của A' trên (ABC) nằm trên đường thẳng BC. Tính khoảng cách từ điểm A đến mặt phẳng (A'BC).
Câu hỏi:
Hình lăng trụ ABC. A’B’C’ có đáy ABC là tam giác vuông tại A; AB=1; AC=2. Hình chiếu vuông góc của A’ trên (ABC) nằm trên đường thẳng BC. Tính khoảng cách từ điểm A đến mặt phẳng (A’BC).
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Chọn C
Gọi H là hình chiếu vuông góc của A’ lên (ABC).
Từ A kẻ AK BC
Vì
Xét vuông tại A, có :
Vậy
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối lăng trụ ABC. A'B'C' có thể tích bằng 2018. Gọi M là trung điểm AA' ; N, P lần lượt là các điểm nằm trên các cạnh BB', CC' sao cho BN=2B'N, CP=3C'P. Tính thể tích khối đa diện ABC. MNP.
Câu hỏi:
Cho khối lăng trụ ABC. A’B’C’ có thể tích bằng 2018. Gọi M là trung điểm AA’ ; N, P lần lượt là các điểm nằm trên các cạnh BB’, CC’ sao cho BN=2B’N, CP=3C’P. Tính thể tích khối đa diện ABC. MNP.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Chọn D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối tứ diện ABCD có thể tích 2017. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính thể tích của khối tứ diện MNPQ.
Câu hỏi:
Cho khối tứ diện ABCD có thể tích 2017. Gọi M, N, P, Q lần lượt là trọng tâm của các tam giác ABC, ABD, ACD, BCD. Tính thể tích của khối tứ diện MNPQ.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Chọn D
(Do E, F, G lần lượt là trung điểm của BC, BD, CD).
Do mặt phẳng (MNP) // (BCD) nên
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình lăng trụ ABC. A'B'C' có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A' lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA' và BC bằng a34. Tính theo a thể tích V của khối lăng trụ ABC. A'B'C'.
Câu hỏi:
Cho hình lăng trụ ABC. A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng . Tính theo a thể tích V của khối lăng trụ ABC. A’B’C’.
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Chọn B
Gọi G là trọng tâm tam giác ABC và M là trung điểm của BC
Ta có nên
Kẻ ; nên
Kẻ , ta có
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình lăng trụ đứng ABC. A'B'C', biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A'BC) bằng a6. Tính thể tích khối lăng trụ ABC. A'B'C'.
Câu hỏi:
Cho hình lăng trụ đứng ABC. A’B’C’, biết đáy ABC là tam giác đều cạnh a. Khoảng cách từ tâm O của tam giác ABC đến mặt phẳng (A’BC) bằng . Tính thể tích khối lăng trụ ABC. A’B’C’.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Chọn D
Diện tích đáy là .
Chiều cao là h = d((ABC); (A’B’C’)) = AA’
Do tam giác ABC là tam giác đều nên O là trọng tâm của tam giác ABC. Gọi I là trung điểm của BC, H là hình chiếu vuông góc của A lên A’I ta có:
Xét tam giác A’AI vuông tại A ta có:
====== **** mời các bạn xem câu tiếp bên dưới **** =====