Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và \(\widehat {ABC} = 60^\circ \). Hình chiếu vuông góc của điểm S lên mặt phẳng \(\left( {ABCD} \right)\) trùng với trọng tâm tam giác ABC. Gọi \(\varphi \) là góc giữa đường thẳng SB với mặt phẳng \(\left( {SCD} \right)\), tính \(\sin \varphi \) biết rằng \(SB = a\).
A. \(\sin \varphi = \frac{1}{4}.\)
B. \(\sin \varphi = \frac{1}{2}.\)
C. \(\sin \varphi = \frac{{\sqrt 3 }}{2}.\)
D. \(\sin \varphi = \frac{{\sqrt 2 }}{2}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
– Gọi M là trung điểm của SD, nhận xét góc giữa SB và \(\left( {SCD} \right)\) cũng bằng góc giữa OM và \(\left( {SCD} \right)\).
– Xác định góc \(\varphi \) và tính \(\sin \varphi \).
Cách giải:
Gọi M là trung điểm của SD, nhận xét góc giữa SB và \(\left( {SCD} \right)\) cũng bằng góc giữa OM và \(\left( {SCD} \right)\) (vì \(OM//SB\)).
Gọi H là hình chiếu của O trên \(\left( {SCD} \right) \Rightarrow \left( {OM,\left( {SCD} \right)} \right) = \left( {OM,MH} \right) = OMH\).
Trong \(\left( {SBD} \right)\) kẻ \(OE//SH\), khi đó tứ diện OECD là tứ diện vuông nên \(\frac{1}{{O{H^2}}} = \frac{1}{{O{C^2}}} + \frac{1}{{O{D^2}}} + \frac{1}{{O{E^2}}}\).
Ta dễ dàng tính được: \(OC = \frac{a}{2},OD = \frac{{a\sqrt 3 }}{2}\).
Lại có \(\frac{{OE}}{{SH}} = \frac{{OD}}{{HD}} = \frac{3}{4} \Rightarrow OE = \frac{3}{4}SH\), mà \(SH = \sqrt {S{B^2} – B{H^2}} = \sqrt {{a^2} – {{\left( {\frac{{a\sqrt 3 }}{3}} \right)}^2}} = \frac{{a\sqrt 6 }}{3}\).
Do đó \(OE = \frac{3}{4}SH = \frac{3}{4}.\frac{{a\sqrt 6 }}{3} = \frac{{a\sqrt 6 }}{4}\).
Suy ra \(\frac{1}{{O{H^2}}} = \frac{1}{{{{\left( {\frac{a}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 6 }}{4}} \right)}^2}}} = \frac{8}{{{a^2}}} \Rightarrow OH = \frac{{a\sqrt 2 }}{4}\).
Tam giác OMH vuông tại H có \(OM = \frac{1}{2}SB = \frac{a}{2};OH = \frac{{a\sqrt 2 }}{4} \Rightarrow \sin OMH = \frac{{OH}}{{OM}} = \frac{{\sqrt 2 }}{2}\).
Vậy \(\sin \varphi = \frac{{\sqrt 2 }}{2}\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\). Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là:
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\). Mặt phẳng \(\left( P \right)\) có một vectơ pháp tuyến là:
A. \(\overrightarrow n \left( {1; – 2;3} \right).\)
Đáp án chính xác
B. \(\overrightarrow n \left( {2;4;6} \right).\)
C. \(\overrightarrow n \left( {1;2;3} \right).\)
D. \(\overrightarrow n \left( { – 1;2;3} \right).\)
Trả lời:
Đáp án A
Mặt phẳng \(\left( P \right):2x – 4y + 6z – 1 = 0\) nhận \(\overrightarrow a = \left( {2; – 4;6} \right)\) là một vectơ pháp tuyến.
Xét \(\overrightarrow n = \left( {1; – 2;3} \right)\). Ta có \(\overrightarrow a = 2\overrightarrow n \) nên suy ra \(\overrightarrow a \) và \(\overrightarrow n \) cùng phương. Vậy \(\overrightarrow n = \left( {1; – 2;3} \right)\) cũng là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a là số thực dương khác 5. Tính \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\).
Câu hỏi:
Cho a là số thực dương khác 5. Tính \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right)\).
A. \(I = – \frac{1}{3}.\)
B. \(I = – 3.\)
C. \(I = \frac{1}{3}.\)
D. \(I = 3.\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
Sử dụng công thức: \({\log _a}{b^m} = m{\log _a}b\;\left( {0 < a \ne 1,b > 0} \right)\).
Cách giải:
Ta có \(I = {\log _{\frac{a}{5}}}\left( {\frac{{{a^3}}}{{125}}} \right) = {\log _{\frac{a}{5}}}{\left( {\frac{a}{5}} \right)^3} = 3{\log _{\frac{a}{5}}}\left( {\frac{a}{5}} \right) = 3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
Hàm số nghịch biến trên khoảng nào sau đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ sau:
Hàm số nghịch biến trên khoảng nào sau đây?A. \(\left( { – \infty ;2} \right).\)
B. \(\left( {0;2} \right).\)
Đáp án chính xác
C. \(\left( {2; + \infty } \right).\)
D. \(\left( {0; + \infty } \right).\)
Trả lời:
Đáp án B
Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên \(\left( {0;2} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Phương trình \({7^{2{x^2} + 5x + 4}} = 49\) có tổng tất cả các nghiệm bằng:
Câu hỏi:
Phương trình \({7^{2{x^2} + 5x + 4}} = 49\) có tổng tất cả các nghiệm bằng:
A. 1.
B. \(\frac{5}{2}.\)
C. \( – 1.\)
D. \( – \frac{5}{2}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
Đưa về cùng cơ số: \({a^{f\left( x \right)}} = {a^{g\left( x \right)}} \Leftrightarrow f\left( x \right) = g\left( x \right)\;\left( {0 < a \ne 1} \right)\).
Cách giải:
Ta có \({7^{2{x^2} + 5x + 4}} = 49 = {7^2} \Leftrightarrow 2{x^2} + 5x + 4 = 2 \Leftrightarrow \left[ \begin{array}{l}x = – \frac{1}{2}\\x = – 2\end{array} \right..\)
Vậy tổng các nghiệm của phương trình là \( – \frac{1}{2} – 2 = – \frac{5}{2}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 5\). Số hạng \({u_4}\) bằng:
Câu hỏi:
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 2n + 5\). Số hạng \({u_4}\) bằng:
A. 19.
B. 11.
C. 21.
D. 13.
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \({u_4} = 2.4 + 5 = 13\).====== **** mời các bạn xem câu tiếp bên dưới **** =====