Câu hỏi:
Cho hình chóp S.ABC có mặt đáy là tam giác đều cạnh bằng 2, hình chiếu của S lên mặt phẳng \(\left( {ABC} \right)\) là điểm H nằm trong tam giác ABC sao cho \(\widehat {AHB} = 150^\circ ;\widehat {BHC} = 120^\circ ;\widehat {CHA} = 90^\circ \). Biết tổng diện tích mặt cầu ngoại tiếp các hình chóp S.HAB; S.HBC; S.HCA bằng \(\frac{{124\pi }}{3}\). Tính chiều cao SH của hình chóp.
A. \(SH = \frac{4}{3}\)
B. \(SH = \frac{{2\sqrt 3 }}{3}\)
C. \(SH = \frac{{4\sqrt 3 }}{3}\)
Đáp án chính xác
D. \(SH = \frac{2}{3}\)
Trả lời:
Đáp án C
Gọi \({r_1},{r_2},{r_3}\) lần lượt là bán kính đường tròn ngoại tiếp \(\Delta HAB,\Delta HBC,\Delta HCA\).
Theo định lí Sin, ta có \(\frac{{AB}}{{\sin \widehat {AHB}}} = 2{{\rm{r}}_1} \Rightarrow {r_1} = \frac{2}{{2.\sin 150^\circ }} = 2\); tương tự \( \Rightarrow \left\{ \begin{array}{l}{r_2} = \frac{{2\sqrt 3 }}{3}\\{r_3} = 1\end{array} \right.\).
Gọi \({R_1},{R_2},{R_3}\) lần lượt là bán kính mặt cầu ngoại tiếp các hình chóp S.HAB, S.HBC, S.HCA.
Đặt và
Suy ra
Vậy thể tích khối chóp S.ABC là \(V = \frac{1}{3}SH.{S_{\Delta ABC}} = \frac{1}{3}.\frac{{4\sqrt 3 }}{3}.\frac{{{2^2}\sqrt 3 }}{4} = \frac{4}{3}\).
Chú ý: “Cho hình chóp S.ABC có SA vuông góc với đáy và \({R_{\Delta ABC}}\) là bán kính đường tròn ngoại tiếp tam giác ABC \( \to R = \sqrt {R_{\Delta ABC}^2 + \frac{{S{A^2}}}{4}} \) là bán kính mặt cầu ngoại tiếp khối chóp S.ABC”.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian tọa độ Oxyz, phương trình chính tắc của đường thẳng đi qua điểm \(A\left( {1; – 1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {2; – 1;3} \right)\) là
Câu hỏi:
Trong không gian tọa độ Oxyz, phương trình chính tắc của đường thẳng đi qua điểm \(A\left( {1; – 1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {2; – 1;3} \right)\) là
A. \(\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z + 2}}{3}\)
B. \(\frac{{x – 2}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 3}}{2}\)
C. \(\frac{{x + 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{{z + 3}}{2}\)
D. \(\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 2}}{3}\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(d:\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 2}}{3}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
Câu hỏi:
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
A. \(y = {x^4} – 4{{\rm{x}}^2} + 2\)
Đáp án chính xác
B. \(y = {x^4} + 4{{\rm{x}}^2} + 2\)
C.
D. \(y = {x^3} – 4{{\rm{x}}^2} + 2\)
Trả lời:
Đáp án A
Ta loại ngay D. Từ Hệ số \(a > 0 \Rightarrow \) Loại C.
Hàm số có 3 điểm cực trị nên \(ab < 0 \Rightarrow \) Loại B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\). Hỏi có bao nhiêu số có 3 chữ số (không nhất thiết khác nhau) được lập từ các số thuộc tập hợp A
Câu hỏi:
Cho tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\). Hỏi có bao nhiêu số có 3 chữ số (không nhất thiết khác nhau) được lập từ các số thuộc tập hợp A
A. \({5^3}\)
Đáp án chính xác
B. \({3^5}\)
C. \(C_5^3\)
D. \(A_5^3\)
Trả lời:
Đáp án A
Số cần lập có dạng \(\overline {abc} {\rm{ }}\left( {a,b,c \in {\rm{A}}} \right)\).
Vì a, b, c không nhất thiết khác nhau nên a, b, c đều có 5 cách chọn.
Do đó \(5.5.5 = {5^3}\) số thỏa mãn yêu cầu bài toán.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \∫02fxdx=3 và ∫02gxdx=7, khi đó ∫02fx+3gxdx bằng
Câu hỏi:
Cho \ và , khi đó bằng
A. 16
B. \( – 18\)
C. 24
Đáp án chính xác
D. 10
Trả lời:
Đáp án C
Ta có====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({2^{{x^2} + 2{\rm{x}}}} \le 8\) là
Câu hỏi:
Tập nghiệm của bất phương trình \({2^{{x^2} + 2{\rm{x}}}} \le 8\) là
A. \(\left( { – \infty ; – 3} \right]\)
B. \(\left[ { – 3;1} \right]\)
Đáp án chính xác
C. \(\left( { – 3;1} \right)\)
D. \(\left( { – 3;1} \right]\)
Trả lời:
Đáp án B
BPT====== **** mời các bạn xem câu tiếp bên dưới **** =====