Câu hỏi:
Cho hàm số có đồ thị (C) . Gọi I là giao điểm của hai tiệm cận. Tiếp tuyến của (C) cắt 2 tiệm cận tại A và B sao cho chu vi tam giác IAB đạt giá trị nhỏ nhất. Khoảng cách lớn nhất từ gốc tọa độ đến tiếp tuyến gần giá trị nào nhất?
A. 6.
B. 4.
C. 3.
D. 5.
Đáp án chính xác
Trả lời:
+ Gọi
Phương trình tiếp tuyến tại M có dạng
+ Giao điểm của với tiệm cận đứng là
+ Giao điểm của với tiệm cận ngang là B( 2x0-1; 2).
Ta có
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với thì phương trình tiếp tuyến là . Suy ra
+ Với thì phương trình tiếp tuyến là . Suy ra
Vậy khoảng cách lớn nhất là gần với giá trị 5 nhất trong các đáp án.
Chọn D.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
Câu hỏi:
Cho hàm số y= -x3+3mx2-3m-1 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số đã cho có hai điểm cực trị đối xứng với nhau qua đường thẳng d: x+8y-74=0.
A. m=1
B. m=- 2
C. m= -1
D. m=1
Đáp án chính xác
Trả lời:
Ta có
Để đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó gọi A( 0 ; -3m-1) và B( 2m ; 4m3-3m-1) là hai điểm cực trị của đồ thị hàm số.
Suy ra trung điểm của AB là điểm I ( m ; 2m3-3m-1) và
Đường thẳng d có một vectơ chỉ phương là
Ycbt
Chọn D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=x3+3×2+mx+m-2 với m là tham số thực, có đồ thị là (C) . Tìm tất cả các giá trị của m để (C) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
Câu hỏi:
Cho hàm số y=x3+3x2+mx+m-2 với m là tham số thực, có đồ thị là (C) . Tìm tất cả các giá trị của m để (C) có các điểm cực đại và cực tiểu nằm về hai phía đối với trục hoành.
A. m<2
B. m
C. m<3
Đáp án chính xác
D.
Trả lời:
Đạo hàm y’ = 3x2+6x+m. Ta có
Hàm số có cực đại và cực tiểu khi > 0
Ta có
Gọi x1; x2 là hoành độ của hai điểm cực trị khi đó
Theo định lí Viet, ta có
Hai điểm cực trị nằm về hai phía trục hoành khi y1.y2<0
Chọn C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y= x3-3×2-mx+2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng d ; x+4y-5=0 một góc α=45°.
Câu hỏi:
Cho hàm số y= x3-3x2-mx+2 với m là tham số thực. Tìm giá trị của m để đường thẳng đi qua hai điểm cực trị của đồ thị hàm số tạo với đường thẳng d ; x+4y-5=0 một góc .
A. m= -1/2
Đáp án chính xác
B. m= 1/2
C. m=0
D. m= 1
Trả lời:
Ta có y’=3x2-6x-m
Để đồ thị hàm số đã cho có hai điểm cực trị khi phương trình y’=0 có hai nghiệm phân biệt
Ta có
đường thẳng đi qua hai điểm cực trị Avà B là
Đường thẳng d; x+4y-5=0 có một VTPT là
Đường thẳng có một VTCP là
Ycbt suy ra:
Suy ra
thỏa mãn
Chọn A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y= 2×3-3( m+ 1) x2+ 6mx+ m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB = 2
Câu hỏi:
Cho hàm số y= 2x3-3( m+ 1) x2+ 6mx+ m3 với m là tham số thực. Tìm tất cả các giá trị của m để đồ thị hàm số có hai điểm cực trị A; B thỏa mãn AB =
A. m=0
B. m=0; m= 2.
Đáp án chính xác
C. m=1
D. m=2
Trả lời:
Ta có
Để hàm số có hai điểm cực trị khi m khác -1
Tọa độ các điểm cực trị là A( 1; m3+ 3m-1) và B( m; 3m2)
Suy ra
Chọn B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y= x3- 3mx2+4m2-2 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị A; B sao cho I( 1; 0) là trung điểm của đoạn thẳng AB.
Câu hỏi:
Cho hàm số y= x3– 3mx2+4m2-2 với m là tham số thực. Tìm giá trị của m để đồ thị hàm số có hai điểm cực trị A; B sao cho I( 1; 0) là trung điểm của đoạn thẳng AB.
A. 0
B. -1.
C. 1.
Đáp án chính xác
D. 2.
Trả lời:
Ta có
Đề đồ thị hàm số có hai điểm cực trị khi m khác 0.
Khi đó tọa độ hai điểm cực trị là A( 0 ; 4m2– 2) và B( 2m; 4m2– 4m3-2).
Do I( 1; 0) là trung điểm của AB nên
Chọn C.====== **** mời các bạn xem câu tiếp bên dưới **** =====