Câu hỏi:
Cho hàm số \(y = {x^3} – 3{x^2}\) có đồ thị \(\left( C \right).\) Có bao nhiêu số nguyên \(b \in \left( { – 10;10} \right)\) để có đúng một tiếp tuyến của \(\left( C \right)\) đi qua điểm \(B\left( {0;b} \right)?\)
A. 9.
B. 2.
C. 17.
Đáp án chính xác
D. 16.
Trả lời:
Đáp án C.
Ta có \(y’ = 3{x^2} – 6x.\)
Gọi \(d\) là tiếp tuyến với \(\left( C \right)\) và \(\left( {{x_0};{y_0}} \right)\) là tiếp điểm.
\(d:y – {y_0} = y’\left( {{x_0}} \right)\left( {x – {x_0}} \right) \Leftrightarrow d:y – \left( {x_0^3 – 3x_0^2} \right) = \left( {3x_0^2 – 6{x_0}} \right)\left( {x – {x_0}} \right).\)
\(B\left( {0;b} \right) \in d \Leftrightarrow b – x_0^3 + 3x_0^2 = – {x_0}\left( {3x_0^2 – 6{x_0}} \right) \Leftrightarrow 2x_0^3 – 3x_0^2 + b = 0 \Leftrightarrow b = – 2x_0^3 + 3x_0^2.\left( 1 \right)\)
Đặt \(f\left( x \right) = – 2{x^3} + 3{x^2}.\) Ta có \(f’\left( x \right) = – 6{x^2} + 6x.\)
\(f’\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right..\)
Bảng biến thiên
Yêu cầu bài toán \( \Leftrightarrow \) phương trình \(\left( 1 \right)\) có duy nhất nghiệm \({x_0} \Leftrightarrow \left[ \begin{array}{l}b >1\\b < 0\end{array} \right..\)
Vậy có 17 số nguyên \(b \in \left( { – 10;10} \right)\) thỏa yêu cầu bài toán.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số đỉnh của một khối lăng trụ tam giác là
Câu hỏi:
Số đỉnh của một khối lăng trụ tam giác là
A.9.
B. 3.
C. 6.
Đáp án chính xác
D. 12.
Trả lời:
Đáp án C.
Khối lăng trụ tam giác có 6 đỉnh.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đạo hàm của hàm số \(y = {x^4}\) là
Câu hỏi:
Đạo hàm của hàm số \(y = {x^4}\) là
A.\(y’ = 4{x^3}.\)
Đáp án chính xác
B.\(y’ = 0.\)
C.\(y’ = 4{x^2}.\)
D. \(y’ = 4x.\)
Trả lời:
Đáp án A.
Ta có: \(y’ = \left( {{x^4}} \right)’ = 4{x^3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?A. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng \( – 1.\)
B. Hàm số có đúng một cực trị.
C. Hàm số có giá trị cực tiểu bằng 1.
D. Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1.\)
Đáp án chính xác
Trả lời:
Đáp án D.
Từ bảng biến thiên ta thấy, tính từ trái qua phải:
Dấu của \(y’\) đổi dấu từ (+) sang (-) khi qua \(x = 0,\) nên tại \(x = 0\) hàm số đạt cực đại.
Dấu của \(y’\) đổi dấu từ (-) sang (+) khi qua \(x = 1,\) nên tại \(x = 1\) hàm số đạt cực tiểu.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- \(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right)\) bằng
Câu hỏi:
\(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right)\) bằng
A.\( – 1.\)
B. 3.
Đáp án chính xác
C.\( – 3.\)
D. 1.
Trả lời:
Đáp án B.
Ta có: \(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right) = 1 – \left( { – 1} \right) – {\left( { – 1} \right)^3} = 3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối lăng trụ có diện tích đáy \(B = 6\) và chiều cao \(h = 3.\) Thể tích của khối lăng trụ đã cho bằng
Câu hỏi:
Cho khối lăng trụ có diện tích đáy \(B = 6\) và chiều cao \(h = 3.\) Thể tích của khối lăng trụ đã cho bằng
A. 18.
Đáp án chính xác
B. 54.
C. 36.
D. 2.
Trả lời:
Đáp án A.
Thể tích khối lăng trụ là \(V = Bh = 6.3 = 18.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====