Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và đồ thị hàm số \(y = f’\left( x \right)\) như hình vẽ. Bất phương trình \(f\left( x \right) \le {3^x} – 2x + m\) có nghiệm với mọi \(x \in \left( { – \infty ;1} \right]\) khi và chỉ khi
A.
\(m \ge f\left( 1 \right) – 1\)
Đáp án chính xác
B.\(m >f\left( 1 \right) + 1\)
C.\(m \le f\left( 1 \right) – 1\)
D.\(m < f\left( 1 \right) – 1\)
</>
Trả lời:
Chọn đáp án A
Xét hàm số \(g\left( x \right) = f\left( x \right) – {3^x} + 2x,{\rm{ }}x \in \left( { – \infty ;1} \right] \Rightarrow g’\left( x \right) = f’\left( x \right) – {3^x}\ln 3 + 2\).
Dựa vào hình vẽ thì
\(f’\left( x \right) < – 3,{\rm{ }}\forall x \in \left( { – \infty ;1} \right) \Rightarrow g’\left( x \right) < – 3 – {3^x}\ln 3 + 2 < 0,{\rm{ }}\forall x \in \left( { – \infty ;1} \right)\)
\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( { – \infty ;1} \right] \Rightarrow g\left( x \right) \ge g\left( 1 \right) = f\left( 1 \right) – 1\).
Khi đó \(m \ge g\left( x \right)\) có nghiệm với mọi \(x \in \left( { – \infty ;1} \right]\)
\( \Leftrightarrow m \ge {\min _{\left( { – \infty ;1} \right]}}g\left( x \right) \Leftrightarrow m \ge g\left( 1 \right) \Leftrightarrow m \ge f\left( 1 \right) – 1\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \cos 3x\) là
Câu hỏi:
Họ tất cả các nguyên hàm của hàm số \(f\left( x \right) = \cos 3x\) là
A.\( – \frac{1}{3}\sin 3x + C.\)
B.\(\frac{1}{3}\sin 3x + C.\)
Đáp án chính xác
C.\( – 3\sin 3x + C.\)
D.\(3\sin 3x + C.\)
Trả lời:
Lời giải:
Chọn đáp án B
Ta có \(\int {\cos 3xdx} = \frac{{\sin 3x}}{3} + C\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz,cho mặt phẳng \(\left( P \right):x – 4y + 3z – 2 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Câu hỏi:
Trong không gian Oxyz,cho mặt phẳng \(\left( P \right):x – 4y + 3z – 2 = 0.\) Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A.\(\vec n = \left( {0; – 4;3} \right).\)
B.\(\vec n = \left( {1{\mkern 1mu} ;{\mkern 1mu} 4{\mkern 1mu} ;{\mkern 1mu} 3} \right).\)
C.\(\vec n = \left( { – 1;4; – 3} \right).\)
Đáp án chính xác
D.\(\vec n = \left( { – 4;3; – 2} \right).\)
Trả lời:
Chọn đáp án C
Mặt phẳng \(\left( P \right):x – 4y + 3z – 2 = 0\) có một VTPT là \(\overrightarrow n = \left( { – 1;4; – 3} \right)\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số f(x) có bảng biến thiên như sau:Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A.\(\left( { – \infty ;1} \right).\)
B.\(\left( {3; + \infty } \right).\)
C.\(\left( {0;4} \right).\)
D.\(\left( {1;3} \right).\)
Đáp án chính xác
Trả lời:
Lời giải:Chọn đáp án DHàm số \(f\left( x \right)\) nghịch biến trên \(\left( {1;3} \right)\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số f(x) có bảng biến thiên như sau:Giá trị cực đại của hàm số đã cho là
Câu hỏi:
Cho hàm số f(x) có bảng biến thiên như sau:Giá trị cực đại của hàm số đã cho là
A.4.
B.0.
C.1.
D.5.
Đáp án chính xác
Trả lời:
Lời giải:Chọn đáp án DGiá trị cực đại của hàm số \(f\left( x \right)\) là 5
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tính đạo hàm của hàm số \(y = {\log _2}\sqrt {2x + 3} .\)
Câu hỏi:
Tính đạo hàm của hàm số \(y = {\log _2}\sqrt {2x + 3} .\)
A.\(y’ = \frac{2}{{2x + 3}}.\)
B.\(y’ = \frac{1}{{2x + 3}}.\)
C.\(y’ = \frac{2}{{\left( {2x + 3} \right)\ln 2}}.\)
D.\(y’ = \frac{1}{{\left( {2x + 3} \right)\ln 2}}.\)
Đáp án chính xác
Trả lời:
Chọn đáp án D
Ta có \(y = \frac{1}{2}{\log _2}\left( {2x + 3} \right) \Rightarrow y’ = \frac{1}{2}.\frac{{{{\left( {2x + 3} \right)}^\prime }}}{{\left( {2x + 3} \right)\ln 2}} = \frac{1}{{\left( {2x + 3} \right)\ln 2}}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====