Câu hỏi:
Cho hàm số f(x) liên tục trên \(\left[ {0;{\mkern 1mu} 1} \right].\) Biết \(\int\limits_0^1 {\left[ {x.{\mkern 1mu} f’\left( {1 – x} \right) – f\left( x \right)} \right]{\mkern 1mu} {\rm{d}}x} = \frac{1}{2},\) tính \(f\left( 0 \right).\)
A. \(f\left( 0 \right) = – {\mkern 1mu} 1.\)
B. \(f\left( 0 \right) = \frac{1}{2}.\)
C. \(f\left( 0 \right) = – \frac{1}{2}.\)
Đáp án chính xác
D. \(f\left( 0 \right) = 1.\)
Trả lời:
Đáp án C
Ta có: \(I = \int\limits_0^1 {\left[ {x.f’\left( {1 – x} \right) – f\left( x \right)} \right]dx} = \int\limits_0^1 {x.f’\left( {1 – x} \right)dx} – \int\limits_0^1 {f\left( x \right)dx} \)
Đặt \(t = 1 – x \Rightarrow dt = – dx.\) Đổi cận \(\left| \begin{array}{l}x = 0 \Rightarrow t = 1\\x = 1 \Rightarrow t = 0\end{array} \right.\), ta có \(\int\limits_0^1 {x.f’\left( {1 – x} \right)dx = \int\limits_1^0 {\left( {1 – t} \right)f’\left( t \right)\left( { – dt} \right)} } \)
\( = \int\limits_0^1 {\left( {1 – x} \right)f’\left( x \right)dx} \)
Đặt \(\left\{ \begin{array}{l}u = 1 – x\\dv = f’\left( x \right)dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = – dx\\v = f\left( x \right)\end{array} \right.\) ta có:
\(\int\limits_0^1 {\left( {1 – x} \right)f’\left( x \right)dx} = \left( {1 – x} \right)f\left( x \right)\left| {_{\scriptstyle\atop\scriptstyle0}^{\scriptstyle1\atop\scriptstyle}} \right. + \int\limits_0^1 {f\left( x \right)dx} = – f\left( 0 \right) + \int\limits_0^1 {f\left( x \right)dx} \)
Suy ra \(I = – f\left( 0 \right) \Rightarrow f\left( 0 \right) = – \frac{1}{2}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x – y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng \(\left( P \right):2x – y + z + 4 = 0\). Khi đó mặt phẳng (P) có một vectơ pháp tuyến là
A. \(\overrightarrow {{n_1}} = \left( {2; – 1;1} \right)\)
Đáp án chính xác
B. \(\overrightarrow {{n_2}} = \left( {2;1;1} \right)\)
C. \(\overrightarrow {{n_4}} = \left( { – 2;1;1} \right)\)
D. \(\overrightarrow {{n_3}} = \left( {2;1;4} \right)\)
Trả lời:
Đáp án A
Phương pháp
Mặt phẳng \(\left( P \right):ax + by + cz + d = 0\) có một vectơ pháp tuyến \(\overrightarrow n = \left( {a;b;c} \right)\)
Cách giải
Mặt phẳng \(\left( P \right):2x – y + z + 4 = 0\) có một VTPT là \(\overrightarrow n = \left( {2; – 1;1} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).
Câu hỏi:
Cho a là số thực dương bất kì khác 1. Tính \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right)\).
A. \(S = \frac{3}{4}\)
B. \(S = 7\)
C. \(S = \frac{{13}}{4}\)
Đáp án chính xác
D. \(S = 12\)
Trả lời:
Đáp án C
Phương pháp
Sử dụng các công thức lũy thừa thu gọn biểu thức dưới dấu logarit và sử dụng công thức \({\log _a}{a^n} = n.\)
Cách giải
Ta có: \(S = {\log _a}\left( {{a^3}\sqrt[4]{a}} \right) = {\log _a}\left( {{a^3}.{a^{\frac{1}{4}}}} \right) = {\log _a}^{\frac{{13}}{4}} = \frac{{13}}{4}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình bên dưới. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
A. \(\left( {1; + \infty } \right)\)
B. \(\left( { – 1;0} \right)\)
C. \(\left( { – \infty ;1} \right)\)
D. \(\left( {0;1} \right)\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp
Sử dụng cách đọc bảng biến thiên để suy ra khoảng đồng biến của hàm số.
Hàm số liên tục trên \(\left( {a;b} \right)\) có \(y’ > 0\) với \(x \in \left( {a;b} \right)\) thì hàm số đồng biến trên \(\left( {a;b} \right).\)
Cách giải
Từ BBT ta có hàm số đồng biến trên các khoảng \(\left( { – \infty ; – 1} \right)\) và \(\left( {0;1} \right).\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho phương trình \({2^{2x}} – {5.2^x} + 6 = 0\) có hai nghiệm \({x_1},{x_2}\). Tính \(P = {x_1}.{x_2}\).
Câu hỏi:
Cho phương trình \({2^{2x}} – {5.2^x} + 6 = 0\) có hai nghiệm \({x_1},{x_2}\). Tính \(P = {x_1}.{x_2}\).
A. \(P = {\log _2}6\)
B. \(P = 2{\log _2}3\)
C. \(P = {\log _2}3\)
Đáp án chính xác
D. \(P = 6\)
Trả lời:
Đáp án C
Phương pháp
Coi phương trình đã cho là bậc hai ẩn \({2^x}\), giải phương trình tìm x và kết luận.
Cách giải
Ta có: \({2^{2x}} – {5.2^x} + 6 = 0 \Leftrightarrow \left( {{2^x} – 2} \right)\left( {{2^x} – 3} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{2^x} = 2\\{2^x} = 3\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = {\log _2}3\end{array} \right.\)
Do đó \(P = {x_1}{x_2} = 1.{\log _2}3 = {\log _2}3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số cộng có \({u_1} = – 3;{u_{10}} = 24\). Tìm công sai d?
Câu hỏi:
Cho cấp số cộng có \({u_1} = – 3;{u_{10}} = 24\). Tìm công sai d?
A. \(d = \frac{7}{3}\)
B. \(d = – 3\)
C. \(d = – \frac{7}{3}\)
D. \(d = 3\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp
Sử dụng công thức: Cho cấp số cộng có số hạng đầu \({u_1}\) và công sai d thì số hạng thứ \(n\left( {n > 1} \right)\) là
\({u_n} = {u_1} + \left( {n – 1} \right)d.\)
Từ đó ta tìm được công sai d.
Cách giải
Ta có \({u_{10}} = {u_1} + 9d \Leftrightarrow – 3 + 9d = 24 \Leftrightarrow 9d = 27 \Leftrightarrow d = 3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====