Câu hỏi:
Cho hàm số \(f\left( x \right) = \left| {3{{\rm{x}}^4} – 4{{\rm{x}}^3} – 12{{\rm{x}}^2} + m} \right|\). Gọi M là giá trị lớn nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ { – 1;3} \right]\). Giá trị nhỏ nhất của M bằng
A. \(\frac{{59}}{2}\)
Đáp án chính xác
B. \(\frac{5}{2}\)
C. 16
D. \(\frac{{57}}{2}\)
Trả lời:
Đáp án A
Đặt \(g\left( x \right) = 3{{\rm{x}}^4} – 4{{\rm{x}}^3} – 12{{\rm{x}}^2} + m\).
Có
Ta có: \(g\left( { – 1} \right) = m – 5;{\rm{ g}}\left( 0 \right) = m;{\rm{ g}}\left( 2 \right) = m – 32;{\rm{ g}}\left( 3 \right) = m + 27\).
Ta thấy: \(m – 32 < m – 5 < m < m + 27,\forall m\).
TH1: Nếu \ thì \(M = \left| {m – 32} \right|\) và \(\min M = 59\).
TH2: \(\left\{ {\begin{array}{*{20}{l}}{m – 32 < 0 < m + 27}\\{\left| {m – 32} \right| \le \left| {m + 27} \right|}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ – 27 < m < 32}\\{ – m – 27 \le m – 32 \le m + 27}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{ – 27 < m < 32}\\{m \ge \frac{5}{2}}\end{array}} \right. \Leftrightarrow \frac{5}{2} \le m < 32\) thì \(M = \left| {m + 27} \right|\) và \(\min M = \frac{{59}}{2}\).
TH3: thì và
TH4: Nếu \(0 \le m – 32 < m + 27 \Leftrightarrow m \ge 32\) thì \(M = \left| {m + 27} \right|\) và \(\min M = 59\).
Vậy \(\min M = \frac{{59}}{2}\) khi \(m = \frac{5}{2}\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian tọa độ Oxyz, phương trình chính tắc của đường thẳng đi qua điểm \(A\left( {1; – 1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {2; – 1;3} \right)\) là
Câu hỏi:
Trong không gian tọa độ Oxyz, phương trình chính tắc của đường thẳng đi qua điểm \(A\left( {1; – 1;2} \right)\) và có vectơ chỉ phương \(\overrightarrow u \left( {2; – 1;3} \right)\) là
A. \(\frac{{x + 1}}{2} = \frac{{y – 1}}{{ – 1}} = \frac{{z + 2}}{3}\)
B. \(\frac{{x – 2}}{1} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 3}}{2}\)
C. \(\frac{{x + 2}}{1} = \frac{{y – 1}}{{ – 1}} = \frac{{z + 3}}{2}\)
D. \(\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 2}}{3}\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(d:\frac{{x – 1}}{2} = \frac{{y + 1}}{{ – 1}} = \frac{{z – 2}}{3}\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
Câu hỏi:
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
A. \(y = {x^4} – 4{{\rm{x}}^2} + 2\)
Đáp án chính xác
B. \(y = {x^4} + 4{{\rm{x}}^2} + 2\)
C.
D. \(y = {x^3} – 4{{\rm{x}}^2} + 2\)
Trả lời:
Đáp án A
Ta loại ngay D. Từ Hệ số \(a > 0 \Rightarrow \) Loại C.
Hàm số có 3 điểm cực trị nên \(ab < 0 \Rightarrow \) Loại B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\). Hỏi có bao nhiêu số có 3 chữ số (không nhất thiết khác nhau) được lập từ các số thuộc tập hợp A
Câu hỏi:
Cho tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\). Hỏi có bao nhiêu số có 3 chữ số (không nhất thiết khác nhau) được lập từ các số thuộc tập hợp A
A. \({5^3}\)
Đáp án chính xác
B. \({3^5}\)
C. \(C_5^3\)
D. \(A_5^3\)
Trả lời:
Đáp án A
Số cần lập có dạng \(\overline {abc} {\rm{ }}\left( {a,b,c \in {\rm{A}}} \right)\).
Vì a, b, c không nhất thiết khác nhau nên a, b, c đều có 5 cách chọn.
Do đó \(5.5.5 = {5^3}\) số thỏa mãn yêu cầu bài toán.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \∫02fxdx=3 và ∫02gxdx=7, khi đó ∫02fx+3gxdx bằng
Câu hỏi:
Cho \ và , khi đó bằng
A. 16
B. \( – 18\)
C. 24
Đáp án chính xác
D. 10
Trả lời:
Đáp án C
Ta có====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({2^{{x^2} + 2{\rm{x}}}} \le 8\) là
Câu hỏi:
Tập nghiệm của bất phương trình \({2^{{x^2} + 2{\rm{x}}}} \le 8\) là
A. \(\left( { – \infty ; – 3} \right]\)
B. \(\left[ { – 3;1} \right]\)
Đáp án chính xác
C. \(\left( { – 3;1} \right)\)
D. \(\left( { – 3;1} \right]\)
Trả lời:
Đáp án B
BPT====== **** mời các bạn xem câu tiếp bên dưới **** =====