Mời các quý thầy cô và các em học sinh cùng tham khảo và tải về chi tiết tài liệu dưới đây:
Dạng bài tập Ứng dụng tích phân tính diện tích hình phẳng
A. Phương pháp giải & Ví dụ
1. Định lý: Cho hàm số y=f(x) liên tục, không âm trên [a;b]. Khi đó diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b là:
2. Bài toán liên quan
Bài toán 1: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x) liên tục trên đoạn [a;b], trục hoành và hai đường thẳng x=a, x=b được xác định:
Bài toán 2: Diện tích hình phẳng giới hạn bởi đồ thị hàm số y=f(x), y=g(x) liên tục trên đoạn [a;b] và hai đường thẳng x=a, x=b được xác định:
Chú ý:
– Nếu trên đoạn [a;b], hàm số f(x) không đổi dấu thì:
– Nắm vững cách tính tích phân của hàm số có chứa giá trị tuyệt đối
Bài toán 3: Diện tích của hình phẳng giới hạn bởi các đường x=g(y), x=h(y) và hai đường thẳng y=c, y=d được xác định:
Bài toán 4: Diện tích hình phẳng giới hạn bởi 2 đồ thị (C1): f1(x), (C2):f2(x) là:
Trong đó: x1, xn tương ứng là nghiệm nhỏ nhất của phương trình f(x)=g(x)
Ví dụ minh họa
Bài 1: Tính diện tích S của hình phẳng giới hạn bởi Parabol (P):y=3-x2, đường thẳng y=-2x+3, trục tung và x=1.
Lời giải:
Phương trình hoành độ giao điểm: 3-x2=-2x+3 ⇔ x2-2x=0
Diện tích cần tìm được tính bằng công thức sau đây:
Bài 2: Tính diện tích S của hình phẳng giới hạn bởi các đường y=-2x2 và y=-2x-4.
Lời giải:
Phương trình hoành độ giao điểm của y=-2x2 và y=-2x-4 là:
-2x2=-2x-4 ⇔ -2x2+2x+4=0
Bài 3: Tính diện tích S của hình phẳng giới hạn bởi các đường y=x3-3x và y=x
Lời giải:
Ta có phương trình hoành độ giao điểm x3-4x=0
Diện tích
B. Bài tập vận dụng
Bài 1: Tính diện tích hình phẳng được giới hạn bởi các đường y=2x-x2 và đường thẳng x+y=2
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=x2+x-1 và y=x4+x-1 là
x2+x-1=x4+x-1 ⇔ x2 (x2-1)=0
Ta có: x2 (x2-1) ≤ 0 ∀x ∈ [-1;1]. Do đó:
Bài 2: Tính diện tích S của hình phẳng giới hạn bởi các đường x3-x và y=x-x2.
Lời giải:
Phương trình hoành độ giao điểm
x3-x=-x2+x ⇔ x=0; x=-2; x=1
Bài 3: Tính diện tích hình phẳng giới hạn bởi các đường y=cosx; Ox; Oy; x=π
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=cosx và trục Ox (y=0) là:
cosx=0 ⇔ x=π/2+kπ(k ∈ Z)
Xét trên [0;π] nên x=π/2.
Do đó
Bài 4: Tính Diện tích hình phẳng giới hạn bởi các đường y=ex; y=1 và x=1
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=ex và trục y=1 là:
ex=1 ⇔ x=0.
Bài 5: Tính diện tích hình phẳng được giới hạn bởi các đường y=(e+1)x ,y=(1+ex )x
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=(e+1)x và y=(1+ex)x là:
(e+1)x = (1+ex )x
Bài 6: Tính diện tích hình phẳng được giới hạn bởi các đường y=sin2x,y=cosx và hai đường thẳng x=0 ,x=π/2
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=sin2x và y=cosx là:
sin2x=cosx ⇔ cosx.(2sinx-1)=0
Xét trên [0;π/2] nên nhận x=π/6
Bài 7: Tính diện tích hình phẳng được giới hạn bởi hai đường y=√x và y=x2
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm sốy=√xvà y=x2 là :
x2=√x ⇔ x=x4 ⇔ x4-x=0
Ta có: x2-√x ≤ 0,∀x ∈ [0;1]. Do đó:
Bài 8: Tính diện tích hình phẳng giới hạn bởi y=sinx; y=cosx; x=0; x=π
Lời giải:
Phương trình hoành độ giao điểm của hai đồ thị hàm số y=sinx; y=cosx; x=0; x=π là:
sinx=cosx ⇔ tanx=1 ⇔ x=π/4+kπ,k ∈ Z
Vì x ∈ [0;π] nên x=π/4.
Ta có: sinx-cosx ≤ 0, ∀x ∈ [0;π/4]; sinx-cosx ≥ 0,∀x ∈ [π/4;π]
Bài 9: Tính diện tích hình phẳng giới hạn bởi
Lời giải:
Bài 10: Tính diện tích hình phẳng giới hạn bởi các đường
Lời giải:
Phương trình hoành độ giao điểm của đồ thị hàm số y=2x và đồ thị hàm số y=8/x là
Diện tích hình phẳng cần tìm là:
Xem thêm