Câu hỏi:
Cho hàm số \(y = f\left( x \right)\). Hàm số \(y = f’\left( x \right)\) có bảng biến thiên như sau:
Bất phương trình \(f\left( x \right) > {2^x} + m\) đúng với mọi \(x \in \left( { – 1;1} \right)\) khi và chỉ khi
A. \(m < f\left( 1 \right) – 2\)
B. \(m \le f\left( 1 \right) – 2\)
Đáp án chính xác
C. \(m \le f\left( { – 1} \right) – \frac{1}{2}\)
D. \(m < f\left( { – 1} \right) – \frac{1}{2}\)
Trả lời:
Đáp án B
Xét hàm số \(g\left( x \right) = f\left( x \right) – {2^x},x \in \left( { – 1;1} \right) \Rightarrow g’\left( x \right) = f’\left( x \right) – {2^x}\ln 2\)
Với mọi \(x \in \left( { – 1;1} \right)\) thì \(f’\left( x \right) < 0 \Rightarrow g’\left( x \right) < 0,\forall x \in \left( { – 1;1} \right)\)
\( \Rightarrow g\left( x \right)\) nghịch biến trên \(\left( { – 1;1} \right)\)
Khi đó \(m < g\left( x \right),\forall x \in \left( { – 1;1} \right) \Leftrightarrow m \le g\left( 1 \right) \Leftrightarrow m \le f\left( 1 \right) – 2\). Chọn B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Với a là số thực dương tùy ý, \({\log _2}\left( {8a} \right)\) bằng
Câu hỏi:
Với a là số thực dương tùy ý, \({\log _2}\left( {8a} \right)\) bằng
A. \(3 + {\log _2}a\)
Đáp án chính xác
B. \(4 + {\log _2}a\)
C. \(8{\log _2}a\)
D. \(3{\log _2}a\)
Trả lời:
Đáp án A
Ta có \({\log _2}\left( {8a} \right) = {\log _2}8 + {\log _2}a = 3 + {\log _2}a\). Chọn A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, cho mặt phẳng P:3x−4y+5z−2=0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
Câu hỏi:
Trong không gian Oxyz, cho mặt phẳng . Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Đáp án D
Mặt phẳng có một VTPT là . Chọn D.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số phức \(z = 2 – 3i\) có phần ảo bằng
Câu hỏi:
Số phức \(z = 2 – 3i\) có phần ảo bằng
A. 2.
B. \( – 3\)
Đáp án chính xác
C. \( – 2\)
D. \( – 3i\)
Trả lời:
Đáp án B
Số phức \(z = 2 – 3i\) có phần ảo bằng \( – 3\). Chọn B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_2} = 6,{u_5} = 21\). Tính d.
Câu hỏi:
Cho cấp số cộng \(\left( {{u_n}} \right)\) với \({u_2} = 6,{u_5} = 21\). Tính d.
A. \(d = 3\)
B. \(d = 2\)
C. \(d = 4\)
D. \(d = 5\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \(\left\{ \begin{array}{l}{u_2} = 6\\{u_5} = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} + d = 6\\{u_1} + 4d = 21\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 1\\d = 5\end{array} \right. \Rightarrow \)Chọn D====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?A. \(\left( { – 7;25} \right)\)
B. \(\left( { – \infty ; – 4} \right)\)
C. \(\left( { – 4;0} \right)\)
Đáp án chính xác
D. \(\left( {0; + \infty } \right)\)
Trả lời:
Đáp án C
Hàm số \(f\left( x \right)\) nghịch biến trên \(\left( { – 4;0} \right)\). Chọn C.====== **** mời các bạn xem câu tiếp bên dưới **** =====