Câu hỏi:
Có bao nhiêu số nguyên \(a \in \left( { – 2019;2019} \right)\) để phương trình \(\frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} – 1}} = x + a\) có hai nghiệm phân biệt?
A. 0.
B. 2022.
C. 2014.
D. 2015.
Đáp án chính xác
Trả lời:
Đáp án D
Phương trình \(\frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} – 1}} = x + a \Leftrightarrow \frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} – 1}} – x = a\)
Đặt hàm số \(f\left( x \right) = \frac{1}{{\ln \left( {x + 5} \right)}} + \frac{1}{{{3^x} – 1}} – x\) có tập xác định \(D = \left( { – 5; – 4} \right) \cup \left( { – 4;0} \right) \cup \left( {0;\infty } \right)\)
Ta có: \(f’\left( x \right) = \frac{{ – 1}}{{\left( {x + 5} \right){{\ln }^2}\left( {x + 5} \right)}} – \frac{{{3^x}\ln 3}}{{{{\left( {{3^x} – 1} \right)}^2}}} – 1 < 0\)
\( \Rightarrow f\left( x \right)\) nghịch biến trên các khoảng của tập xác định.
Các giới hạn: \(\mathop {\lim }\limits_{x \to – {5^ + }} f\left( x \right) = \frac{1}{{{3^{ – 5}} – 1}} + 5 = \frac{{967}}{{242}},{\rm{ }}\mathop {\lim }\limits_{x \to – {4^ – }} f\left( x \right) = – \infty ,{\rm{ }}\mathop {\lim }\limits_{x \to – {4^ + }} f\left( x \right) = + \infty \)
\(\mathop {\lim }\limits_{x \to {0^ – }} f\left( x \right) = – \infty ,{\rm{ }}\mathop {\lim }\limits_{x \to {0^ + }} f\left( x \right) = + \infty ,{\rm{ }}\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = – \infty \).
Bảng biến thiên
Phương trình \(f\left( x \right) = a\) có hai nghiệm phân biệt khi và chỉ khi \(a \ge \frac{{967}}{{242}}\).
Do \(\left\{ \begin{array}{l}a \in \mathbb{Z}\\a \in \left( { – 2019;2019} \right)\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a \in \mathbb{Z}\\a \in \left[ {4;2018} \right]\end{array} \right.\). Vậy có \(2018 – 4 + 1 = 2015\) giá trị của a.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Mệnh đề nào dưới đây sai?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
Mệnh đề nào dưới đây sai?A. Hàm số đồng biến trên khoảng \(\left( {2; + \infty } \right).\)
B. Hàm số nghịch biến trên khoảng \(\left( { – \infty ;2} \right).\)
Đáp án chính xác
C. Hàm số nghịch biến trên khoảng \(\left( {0;2} \right).\)
D. Hàm số đồng biến trên khoảng \(\left( { – \infty ;0} \right).\)
Trả lời:
Đáp án B
Từ bảng biến thiên ta có:
Hàm số nghịch biến trên khoảng \(\left( {0;2} \right)\).
Hàm số đồng biến trên khoảng \(\left( { – \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\).
Do đó B là mệnh đề sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz, đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 2 – t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\) có một vectơ chỉ phương là
Câu hỏi:
Trong không gian Oxyz, đường thẳng \(d:\left\{ {\begin{array}{*{20}{l}}{x = 2 – t}\\{y = 1 + 2t}\\{z = 3 + t}\end{array}} \right.\) có một vectơ chỉ phương là
A. \(\overrightarrow {{u_3}} = \left( {2;1;3} \right).\)
B. \(\overrightarrow {{u_1}} = \left( { – 1;2;3} \right).\)
C. \(\overrightarrow {{u_2}} = \left( {2;1;1} \right).\)
D. \(\overrightarrow {{u_4}} = \left( { – 1;2;1} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
Đường thẳng d có một VTCP là \(\overrightarrow u = \left( { – 1;2;1} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hình nón có bán kính đáy, chiều cao, đường sinh lần lượt là \(r,h,l\). Diện tích xung quanh của hình nón là:
Câu hỏi:
Hình nón có bán kính đáy, chiều cao, đường sinh lần lượt là \(r,h,l\). Diện tích xung quanh của hình nón là:
A. \(S = \pi rh.\)
B. \(S = \pi {r^2}.\)
C. \(S = \pi hl.\)
D. \(S = \pi rl.\)
Đáp án chính xác
Trả lời:
Đáp án D
Diện tích xung quanh của hình nón bằng một nửa tích của độ dài đường tròn đáy và độ dài đường sinh: \(S = \pi r\ell \).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số phức liên hợp của \(z = 4 + 3i\) là
Câu hỏi:
Số phức liên hợp của \(z = 4 + 3i\) là
A. \(\bar z = – 3 + 4i.\)
B. \(\bar z = 4 – 3i.\)
Đáp án chính xác
C. \(\bar z = 3 + 4i.\)
D. \(\bar z = 3 – 4i.\)
Trả lời:
Đáp án B
Số phức liên hợp của \(z = 4 + 3i\) là \(\overline z = 4 – 3i\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho \(a > 0;b > 0\). Tìm đẳng thức sai.
Câu hỏi:
Cho \(a > 0;b > 0\). Tìm đẳng thức sai.
A. \({\log _2}{\left( {ab} \right)^2} = 2{\log _2}\left( {ab} \right)\)
B. \({\log _2}a + {\log _2}b = {\log _2}\left( {ab} \right)\)
C. \({\log _2}a – {\log _2}b = {\log _2}\frac{a}{b}\)
D. \({\log _2}a + {\log _2}b = {\log _2}\left( {a + b} \right)\)
Đáp án chính xác
Trả lời:
Đáp án D
Sử dụng các công thức:
\({\log _a}x + {\log _a}y = {\log _a}\left( {xy} \right)\)
\({\log _a}x – {\log _a}y = {\log _a}\frac{x}{y}\)
\({\log _{{a^n}}}{b^m} = \frac{m}{n}{\log _a}b\)
\(\left( {0 < a \ne 1;x,y,b > 0} \right)\).
Dựa vào các đáp án ta thấy đáp án D sai.====== **** mời các bạn xem câu tiếp bên dưới **** =====