Câu hỏi:
Gọi \(M,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{{x^2} + x + 3}}{{x – 2}}\) trên \(\left[ { – 2;1} \right].\) Tính \(T = M + 2m.\)
A. \(T = \frac{{25}}{2}.\)
B. \(T = – 11.\)
Đáp án chính xác
C. \(T = – 7.\)
D. \(T = – 10.\)
Trả lời:
Đáp án B
Hàm số \(y = \frac{{{x^2} + x + 3}}{{x – 2}}\) xác định là liên tục trên đoạn \(\left[ { – 2;1} \right]\).
\(y’ = \frac{{{x^2} – 4x – 5}}{{{{\left( {x – 2} \right)}^2}}},y’ = 0 \Leftrightarrow {x^2} – 4x – 5 = 0 \Leftrightarrow \left[ \begin{array}{l}x = – 1 \in \left[ { – 2;1} \right]\\x = 5 \notin \left[ { – 2;1} \right]\end{array} \right.\)
\(y\left( { – 2} \right) = \frac{{ – 5}}{4},{\rm{ }}y\left( 1 \right) = – 5,{\rm{ }}y\left( { – 1} \right) = – 1\)
Vậy \(M = – 1,{\rm{ }}m = – 5 \Rightarrow T = M + 2m = – 11\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \(A\left( {1;2;1} \right),B\left( { – 3;0;3} \right),C\left( {2;4; – 1} \right).\) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
Câu hỏi:
Trong không gian với hệ trục tọa độ Oxyz cho tam giác ABC, với \(A\left( {1;2;1} \right),B\left( { – 3;0;3} \right),C\left( {2;4; – 1} \right).\) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.
A. \(D\left( {6; – 6;3} \right).\)
B. \(D\left( {6;6;3} \right).\)
C. \(D\left( {6; – 6; – 3} \right).\)
D. \(D\left( {6;6; – 3} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
Gọi \(D\left( {x;y;z} \right)\)
Ta có: \(\overrightarrow {AB} = \left( { – 4; – 2;2} \right),{\rm{ }}\overrightarrow {DC} = \left( {2 – x;4 – y; – 1 – z} \right)\).
Tứ giác ABCD là hình bình hành \( \Rightarrow \overrightarrow {AB} = \overrightarrow {DC} \Leftrightarrow \left\{ \begin{array}{l}2 – x = – 4\\4 – y = – 2\\ – 1 – z = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 6\\y = 6\\z = – 3\end{array} \right. \Rightarrow D\left( {6;6; – 3} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Với các số thực \(a,b > 0,a \ne 1\) tùy ý, biểu thức \({\log _{{a^2}}}\left( {a{b^2}} \right)\) bằng:
Câu hỏi:
Với các số thực \(a,b > 0,a \ne 1\) tùy ý, biểu thức \({\log _{{a^2}}}\left( {a{b^2}} \right)\) bằng:
A. \(\frac{1}{2} + 4{\log _a}b.\)
B. \(2 + 4{\log _a}b.\)
C. \(\frac{1}{2} + {\log _a}b.\)
Đáp án chính xác
D. \(2 + {\log _a}b.\)
Trả lời:
Đáp án C
Phương pháp:
Áp dụng công thức: \({\log _{{a^n}}}b = \frac{1}{n}{\log _a}b{\rm{ }}\left( {a,b > 0,{\rm{ }}a \ne 1,{\rm{ }}n \ne 0} \right)\) và \({\log _a}{b^n} = n.{\log _a}b{\rm{ }}\left( {a,b > 0;{\rm{ }}a \ne 1} \right)\)
Lưu ý: \({\log _a}a = 1{\rm{ }}\left( {a > 0,{\rm{ }}a \ne 1} \right)\)
Cách giải:
\({\log _{{a^2}}}\left( {a{b^2}} \right) = {\log _{{a^2}}}a + {\log _{{a^2}}}{b^2} = \frac{1}{2}{\log _a}a + \frac{1}{2}.2.{\log _a}b = \frac{1}{2} + {\log _a}b\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số \(y = \frac{{{x^3}}}{3} – 3{x^2} + 5x + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
Câu hỏi:
Hàm số \(y = \frac{{{x^3}}}{3} – 3{x^2} + 5x + 2019\) nghịch biến trên khoảng nào trong các khoảng dưới đây?
A. \(\left( {5; + \infty } \right).\)
B. \(\left( { – \infty ;1} \right).\)
C. \(\left( {2;3} \right).\)
D. \(\left( {1;5} \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
Phương pháp:
Xác định khoảng D mà \(y’ \le 0\) và \(y’ = 0\) tại hữu hạn điểm trên D.
Cách giải:
\(y = \frac{{{x^3}}}{3} – 3{x^2} + 5x + 2019 \Rightarrow y’ = {x^2} – 6x + 5,{\rm{ }}y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 5\end{array} \right.\)
Hàm số \(y = \frac{{{x^3}}}{3} – 3{x^2} + 5x + 2019\) nghịch biến trên \(\left( {1;5} \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số nghiệm của phương trình \(\ln \left( {{x^2} – 6x + 7} \right) = \ln \left( {x – 3} \right)\) là
Câu hỏi:
Số nghiệm của phương trình \(\ln \left( {{x^2} – 6x + 7} \right) = \ln \left( {x – 3} \right)\) là
A. 2.
B. 1.
Đáp án chính xác
C. 0.
D. 3.
Trả lời:
Đáp án B
Phương pháp:
\(\ln f\left( x \right) = \ln g\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f\left( x \right) > 0\end{array} \right.\) hoặc \(\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\g\left( x \right) > 0\end{array} \right.\)
Cách giải:
Ta có: \(\ln \left( {{x^2} – 6x + 7} \right) = \ln \left( {x – 3} \right) \Leftrightarrow \left\{ \begin{array}{l}{x^2} – 6x + 7 = x – 3\\x – 3 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^2} – 7x + 10 = 0\\x > 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 2\\x = 5\end{array} \right.\\x > 3\end{array} \right. \Leftrightarrow x = 5\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dãy số nào sau đây là cấp số cộng?
Câu hỏi:
Dãy số nào sau đây là cấp số cộng?
A. \(\left( {{u_n}} \right):{u_n} = \frac{1}{n}.\)
B. \(\left( {{u_n}} \right):{u_n} = {u_{n – 1}} – 2,\forall n \ge 2.\)
Đáp án chính xác
C. \(\left( {{u_n}} \right):{u_n} = {2^n} – 1.\)
D. \(\left( {{u_n}} \right):{u_n} = 2{u_{n – 1}},\forall n \ge 2.\)
Trả lời:
Đáp án B
Hiệu hai số hạng liên tiếp là hằng số thì đó là cấp số cộng.====== **** mời các bạn xem câu tiếp bên dưới **** =====