Câu hỏi:
Cắt hình trụ (T) bằng một mặt phẳng đi qua trục được thiết diện là một hình chữ nhật có diện tích bằng \(30{\mkern 1mu} c{m^2}\) và chu vi bằng \(26{\mkern 1mu} cm\). Biết chiều dài của hình chữ nhật lớn hơn đường kính mặt đáy của hình trụ (T). Diện tích toàn phần của (T) là:
A. \(23\pi \left( {c{m^2}} \right).\)
B. \(\frac{{23\pi }}{2}\left( {c{m^2}} \right).\)
C. \(\frac{{69\pi }}{2}\left( {c{m^2}} \right).\)
Đáp án chính xác
D. \(69\pi \left( {c{m^2}} \right).\)
Trả lời:
Đáp án C
Gọi h, r lần lượt là đường cao và bán kính đáy của hình trụ \(\left( T \right)\). Thiết diện của mặt phẳng và hình trụ là hình \(\left( T \right)\) chữ nhật ABCD. Khi đó theo giả thiết ta có
\(\left\{ \begin{array}{l}h > 2{\rm{r}}\\{S_{ABC{\rm{D}}}} = h.2{\rm{r}} = 30\\{C_{ABC{\rm{D}}}} = 2\left( {h + 2{\rm{r}}} \right) = 26\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}h > 2{\rm{r}}\\h{\rm{r}} = 15\\h + 2{\rm{r}} = 13\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}h > 2{\rm{r}}\\h = 13 – 2{\rm{r}}\\ – 2{{\rm{r}}^2} + 15{\rm{r}} – 15 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}h > 2{\rm{r}}\\h = 13 – 2{\rm{r}}\\\left[ \begin{array}{l}r = 5 \Rightarrow h = 3{\rm{ }}\left( l \right)\\r = \frac{3}{2} \Rightarrow h = 10{\rm{ }}\left( {tm} \right)\end{array} \right.\end{array} \right.\)
Vậy \({S_{tp}} = {S_{xq}} + 2{\rm{S}} = 2\pi rh + 2\pi {r^2} = 2\pi .\frac{3}{2}.10 + 2\pi {\left( {\frac{3}{2}} \right)^2} = \frac{{69\pi }}{2}\left( {c{m^2}} \right)\).
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \(A\left( {1; – 1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {2;2; – 1} \right).\) Phương trình của (P) là
Câu hỏi:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm \(A\left( {1; – 1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {2;2; – 1} \right).\) Phương trình của (P) là
A. \(2x + 2y – z – 6 = 0.\)
B. \(2x + 2y – z + 2 = 0.\)
Đáp án chính xác
C. \(2x + 2y – z + 6 = 0.\)
D. \(2x + 2y – z – 2 = 0.\)
Trả lời:
Đáp án B
Phương trình \(\left( P \right)\) là: \(2{\rm{x}} + 2y – z + 2 = 0\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?
Câu hỏi:
Đường cong trong hình vẽ bên là đồ thị của hàm số nào trong các hàm số cho dưới đây?
A. \(y = \frac{{ – x – 1}}{{x – 1}}\)
Đáp án chính xác
B. \(y = \frac{{x + 1}}{{x – 1}}\)
C. \(y = \frac{{ – x + 1}}{{x + 1}}\)
D. \(y = \frac{{x – 1}}{{x + 1}}\)
Trả lời:
Đáp án A
Đồ thị hàm số có tiệm cận ngang và tiệm cận đứng lần lượt là \(y = 1;x = – 1\).
Ngoài ra hàm số đồng biến trên tập xác định. Chọn A hoặc C.
Tiếp tục tính đạo hàm để loại trừ.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \(\overrightarrow 0 \), có điểm đầu và điểm cuối lấy trong các điểm đã cho là
Câu hỏi:
Trong mặt phằng cho 10 điểm phân biệt. Số vectơ khác \(\overrightarrow 0 \), có điểm đầu và điểm cuối lấy trong các điểm đã cho là
A. \({2^{10}}\)
B. \(A_{10}^2\)
Đáp án chính xác
C. \(10!\)
D. \(C_{10}^2\)
Trả lời:
Đáp án B
Số vectơ (phân biệt điểm đầu, điểm cuối) là \(A_{10}^2\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) và \(f\left( 1 \right) – f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {\left[ {f'\left( x \right) – {e^x}} \right]dx} \).
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên đoạn \(\left[ {0;1} \right]\) và \(f\left( 1 \right) – f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {\left[ {f’\left( x \right) – {e^x}} \right]dx} \).
A. \(1 – e\)
B. \(1 + e\)
C. \(3 – e\)
Đáp án chính xác
D. \(3 + e\)
Trả lời:
Đáp án C
\(I = \int\limits_0^1 {f’\left( x \right)d{\rm{x}}} – \int\limits_0^1 {{e^x}d{\rm{x}}} = \left. {f\left( x \right)} \right|_0^1 – \left. {{e^x}} \right|_0^1 = f\left( 1 \right) – f\left( 0 \right) – \left( {e – 1} \right) = 2 – e + 1 = 3 – e\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập nghiệm của bất phương trình \({3^{2x – 1}} > 27\) là:
Câu hỏi:
Tập nghiệm của bất phương trình \({3^{2x – 1}} > 27\) là:
A. \(\left( {3; + \infty } \right).\)
B. \(\left( {\frac{1}{3}; + \infty } \right).\)
C. \(\left( {\frac{1}{2}; + \infty } \right).\)
D. \(\left( {2; + \infty } \right).\)
Đáp án chính xác
Trả lời:
Đáp án D
\({3^{2{\rm{x}} – 1}} > 27 \Leftrightarrow {3^{2{\rm{x}} – 1}} > {3^3} \Leftrightarrow 2{\rm{x}} – 1 > 3 \Leftrightarrow x > 2\)
Vậy tập nghiệm của bất phương trình là \(\left( {2; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====