Câu hỏi:
Cho hình chóp S. ABC có đáy là tam giác ABC vuông tại A góc ; tam giác SBC là tam giác đều cạnh a và mặt phẳng (SAB) vuông góc mặt phẳng (ABC). Khoảng cách từ A đến mặt phẳng (SBC) là:
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Chọn D
Ta có tam giác ABC vuông tại A góc và BC = a, suy ra AC = , AB =
Lại có , suy ra tam giác SAC vuông tại A.
Suy ra
Tam giác SAB có . Từ đó sử dụng công thức Hê-rông ta tính được .
Suy ra d(H,(SBC))Từ H kẻ .
Kẻ
Ta dễ tính được
Vậy .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại A, BAC^=120o và BC =AA' = a3. Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'.
Câu hỏi:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân tại A, và BC =AA’ = a. Tính theo a thể tích V của khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Đáp án D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác cân tại A, BAC^=120o và BC =AA' = a3. Tính theo a thể tích V của khối lăng trụ ABC.A'B'C'.
Câu hỏi:
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác cân tại A, và BC =AA’ = a. Tính theo a thể tích V của khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Đáp án D
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối lăng trụ tam giác đứng ABC.A'B'C' có đáy là tam giác vuông tại A, AC = AB = 2a, góc giữa AC' và mặt phẳng (ABC) bằng 300. Tính thể tích của khối lăng trụ ABC.A'B'C'.
Câu hỏi:
Cho khối lăng trụ tam giác đứng ABC.A’B’C’ có đáy là tam giác vuông tại A, AC = AB = 2a, góc giữa AC’ và mặt phẳng (ABC) bằng 300. Tính thể tích của khối lăng trụ ABC.A’B’C’.
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
Đáp án D
AC là hình chiếu của AC’ trên (ABC) nên góc giữa AC’ và (ABC) là
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
Câu hỏi:
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, AB = a, tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC biết góc giữa SB và mặt phẳng (ABC) bằng 450.
A.
B.
C.
Đáp án chính xác
D.
Trả lời:
Đáp án C
Gọi H là trung điểm AC. Ta có tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC)
suy ra
Ta có
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a3. Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SC=4a. Tìm thể tích khối chóp S.ABCD.
Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh . Cạnh bên SA vuông góc với mặt phẳng (ABCD) và SC=4a. Tìm thể tích khối chóp S.ABCD.
A. 3a3
B. 3a3
C. a3
D. a3
Đáp án chính xác
Trả lời:
Đáp án D
Xét vuông tại B, có:
Xét , vuông tại A, có:
Thể tích của hình chóp SABCD là:====== **** mời các bạn xem câu tiếp bên dưới **** =====