Câu hỏi:
Trong không gian Oxyz, cho hai điểm A(4;2;-6) ,B(2;4;1).Gọi d là đường thẳng đi qua trọng tâm tam giác ABO sao cho tổng khoảng cách từ A, B đến d là lớn nhất. Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của đường thẳng d?
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án A
Ta gọi AE và BF lần lượt là khoảng cách từ các điểm A, B tới đường thẳng d và gọi G là trọng tâm của tam giác ABO.
Khi đó . Do vậy giá trị lớn nhất của tổng khoảng cách giữa hai điểm A, B tới đường thẳng d là và đẳng thức xảy ra khi và chỉ khi d là đường thẳng qua G đồng thời vuông góc với AG, BG.
Do vậy , ta chọn .
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hàm số y=log73x+1 có tập xác định là:
Câu hỏi:
Hàm số có tập xác định là:
A.
Đáp án chính xác
B.
C.
D.
Trả lời:
Đáp án A
Hàm số xác định khi . Tập xác định: .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong A, B lần lượt là diểm biểu diễn các số phứcz1,z2. Trọng tâm G của tam giác OAB là điểm biểu diễn số phức như trong hình vẽ. Giá trị z12+z22+z32 bằng:
Câu hỏi:
Trong A, B lần lượt là diểm biểu diễn các số phức. Trọng tâm G của tam giác OAB là điểm biểu diễn số phức như trong hình vẽ. Giá trị bằng:
A.
B.
Đáp án chính xác
C.
D.
Trả lời:
Đáp án B
Ta có: .
Suy ra .====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=f(x) có bảng biến thiên như sau:
Số điểm cực đại của hàm số đã cho bằng:
Câu hỏi:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Số điểm cực đại của hàm số đã cho bằng:
A.1
B.2
Đáp án chính xác
C.3
D.0
Trả lời:
Đáp án B
Hàm số đạt cực đại tại các điểm .
Vậy số điểm cực đại của hàm số đã cho bằng 2.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho F(x) là một nguyên hàm của f(x) trên [0;1], biết F1=2 và ∫−11x+1Fxdx=1 . Giá trị tích phân S=∫−11x+12fxdx là:
Câu hỏi:
Cho F(x) là một nguyên hàm của f(x) trên [0;1], biết và . Giá trị tích phân là:
A. S=6
Đáp án chính xác
B.S=3
C.S=2
D. S=9
Trả lời:
Đáp án A
Ta có:====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số y=f(x) có bảng biến thiên như sau:
Đồ thị hàm số y=1f2020−x−2 có bao nhiêu tiệm cận đứng?
Câu hỏi:
Cho hàm số y=f(x) có bảng biến thiên như sau:
Đồ thị hàm số có bao nhiêu tiệm cận đứng?
A.2
B.3
Đáp án chính xác
C.1
D.0
Trả lời:
Đáp án B
Dựa vào bảng biến thiên, ta có có 3 nghiệm.
Suy ra đồ thị hàm số có 3 tiệm cận đứng.====== **** mời các bạn xem câu tiếp bên dưới **** =====