Câu hỏi:
Có bao nhiêu số tự nhiên gồm tám chữ số phân biệt sao cho tổng của tám chữ số này chia hết cho 9?
A.201600.
B.203400.
C.181440.
Đáp án chính xác
D. 176400
Trả lời:
Ta có \(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9\) chia hết cho 9.
Do đó số gồm 8 chữ số phân biệt chia hết cho 9 thì số đó phải không chữ 2 trong 10 chữ số \(\left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\) và có tổng chia hết cho 9.
Ta có 5 cặp số thỏa mãn: \(\left\{ {0;9} \right\};\left\{ {1;8} \right\};\left\{ {2;7} \right\};\left\{ {3;6} \right\};\left\{ {4;5} \right\}.\)
Gọi số có 8 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}} \)
Trường hợp 1: Số được lập không chứa cặp số \(\left\{ {0;9} \right\}.\) Khi đó có 8! Số thỏa mãn.
Trường hợp 2: Số được lập không chứa một trong 4 cặp số \(\left\{ {1;8} \right\};\left\{ {2;7} \right\};\left\{ {3;6} \right\};\left\{ {4;5} \right\}.\)
Với mỗi số không chứa 1 trong 4 cặp trên, ta có 7.7! số được tạo ra thỏa mãn bài toán.
Do đó số các số gồm 8 chữ số phân biệt không chứa một trong 4 cặp số trên là: 7.7!.4
Vậy số các số gồm 8 chữ số phân biệt chia hết cho 8 là: \(8! + 7.7!.4 = 181440\) số.
Đáp án C.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong các hàm số sau hàm số nào nghịch biến trên tập số thực
Câu hỏi:
Trong các hàm số sau hàm số nào nghịch biến trên tập số thực
A.\(y = {x^2} – 5x + 6.\)
B.\(y = – {x^3} + 2{x^2} – 10x + 4.\)
Đáp án chính xác
C.\(y = x + 5.\)
D. \(y = \frac{{x + 10}}{{x – 1}}.\)
Trả lời:
Vì hàm số bậc 2 và hàm phân thức bậc nhất nên không đơn điệu trên tập xác định nên loại đi hai đáp án A và D.Hàm số bậc nhất \(y = x + 5\) có hệ số \(a = 1 >0\) nên hàm số luôn đồng biến trên \(\mathbb{R}\) nên loại đáp án C. Vậy chọn đáp án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Câu hỏi:
Cho hàm số \(f\left( x \right)\) có bảng biến thiên:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?A.\(\left( { – \infty ;1} \right).\)
B.\(\left( {3;5} \right).\)
Đáp án chính xác
C.\(\left( { – 2;3} \right).\)
D. \(\left( {0; + \infty } \right).\)
Trả lời:
Dựa vào bảng biến thiên ta thấy hàm số \(f\left( x \right)\) đồng biến trên \(\left( {3; + \infty } \right)\) nên hàm số cũng đồng biến trên khoảng \(\left( {3;5} \right).\)
Đáp án B.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| – 1} \right)\) có bao nhiêu điểm cực trị?
Câu hỏi:
Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.
Hàm số \(y = f\left( {\left| {x + 1} \right| – 1} \right)\) có bao nhiêu điểm cực trị?A.5.
Đáp án chính xác
B.6.
C.7.
D. 8.
Trả lời:
Xét hàm số \(y = f\left( {\left| {x + 1} \right| – 1} \right)\)
Ta có: \(y’ = \frac{{x + 1}}{{\left| {x + 1} \right|}}f’\left( {\left| {x + 1} \right| – 1} \right)\)
Khi đó \(y’\) không xác định tại \(x = – 1\)
\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x + 1} \right| – 1 = 0\\\left| {x + 1} \right| – 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\\x = – 2\\x = – 3\end{array} \right.\)
Ta có bảng biến thiên:
Dựa vào BBT hàm số có 5 cực trị nên chọn đáp án A.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng
Câu hỏi:
Cho hình lăng trụ đứng \(ABC.A’B’C’\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB’A’\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A’B’C’}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng
A.\(25c{m^3}.\)
B.\(30c{m^3}.\)
C.\(15c{m^3}.\)
Đáp án chính xác
D. \(45c{m^3}.\)
Trả lời:
Ta có:
\(d\left( {O,\left( {ABC} \right)} \right) = \frac{1}{2}AA’\)
\({S_{\Delta AOB}} = \frac{1}{2}d\left( {G;AB} \right).AB\) mà \(d\left( {G;AB} \right) = \frac{1}{3}d\left( {C;AB} \right).\) Khi đó \({S_{\Delta AGB}} = \frac{1}{3}{S_{\Delta ABC}}\)
Vậy: \({V_{OAGB}} = \frac{1}{{18}}{V_{ABC.A’B’C’}} = \frac{1}{{18}}.270 = 15c{m^3}\) nên chọn đáp án C.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?
Câu hỏi:
Có bao nhiêu cách sắp xếp 5 học sinh thành một hàng dọc?
A.\({5^5}.\)
B.\(5!.\)
Đáp án chính xác
C.\(4!.\)
D. 5.
Trả lời:
Đáp án B.
====== **** mời các bạn xem câu tiếp bên dưới **** =====