Câu hỏi:
Gọi \(m\) là tham số thực để giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2x + m – 4} \right|\) trên đoạn \(\left[ { – 2;1} \right]\) đạt giá trị nhỏ nhất. Giá trị của \(m\) là
A.1.
B.3.
Đáp án chính xác
C.5.
D.4.
Trả lời:
Đáp án B.
Xét hàm số \(f\left( x \right) = {x^2} + 2x + m – 4\) trên đoạn \(\left[ { – 2;1} \right].\)
Ta có: \(f’\left( x \right) = 2x + 2 = 0 \Leftrightarrow 2x = – 2 \Leftrightarrow x = – 1\)
\(y\left( { – 2} \right) = \left| {m – 4} \right|;y\left( { – 1} \right) = \left| {m – 5} \right|;y\left( 1 \right) = \left| {m – 1} \right|\)
Với \(\forall m\) ta luôn có: \(m – 1 >m – 4 >m – 5\) nên \(\mathop {Max}\limits_{\left[ { – 2;1} \right]} y = Max\left\{ {\left| {m – 1} \right|;\left| {m – 5} \right|} \right\}\)
Mà \(\left| {m – 1} \right| \ge \left| {m – 5} \right| \Leftrightarrow {\left( {m – 1} \right)^2} \ge {\left( {m – 5} \right)^2} \Leftrightarrow {m^2} – 2m + 1 \ge {m^2} – 10m + 25 \Leftrightarrow 8m \ge 24 \Leftrightarrow m \ge 3\)
Do đó: \(\mathop {Max}\limits_{\left[ { – 2;1} \right]} y = Max\left\{ {\left| {m – 1} \right|;\left| {m – 5} \right|} \right\} = \left\{ \begin{array}{l}\left| {m – 1} \right|{\rm{ }}khi{\rm{ }}m \ge 3\\\left| {m – 5} \right|{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right.\)
Xét hàm số \(g\left( m \right) = \left\{ \begin{array}{l}\left| {m – 1} \right|{\rm{ }}khi{\rm{ }}m \ge 3\\\left| {m – 5} \right|{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right. \Rightarrow g\left( m \right) = \left\{ \begin{array}{l}m – 1{\rm{ }}khi{\rm{ }}m \ge 3\\5 – m{\rm{ }}khi{\rm{ }}m \le 3\end{array} \right.\)
Đồ thị hàm số như sau:
Từ đồ thị ta thấy \(Min\left[ {g\left( m \right)} \right] = 2\) khi \(m = 3\)
Vậy khi \(m = 3\) thì giá trị lớn nhất của hàm số \(y = \left| {{x^2} + 2x + m – 4} \right|\) trên đoạn \(\left[ { – 2;1} \right]\) đạt giá trị
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Số đỉnh của một khối lăng trụ tam giác là
Câu hỏi:
Số đỉnh của một khối lăng trụ tam giác là
A.9.
B. 3.
C. 6.
Đáp án chính xác
D. 12.
Trả lời:
Đáp án C.
Khối lăng trụ tam giác có 6 đỉnh.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đạo hàm của hàm số \(y = {x^4}\) là
Câu hỏi:
Đạo hàm của hàm số \(y = {x^4}\) là
A.\(y’ = 4{x^3}.\)
Đáp án chính xác
B.\(y’ = 0.\)
C.\(y’ = 4{x^2}.\)
D. \(y’ = 4x.\)
Trả lời:
Đáp án A.
Ta có: \(y’ = \left( {{x^4}} \right)’ = 4{x^3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên sau:
Khẳng định nào sau đây là khẳng định đúng?A. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng \( – 1.\)
B. Hàm số có đúng một cực trị.
C. Hàm số có giá trị cực tiểu bằng 1.
D. Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1.\)
Đáp án chính xác
Trả lời:
Đáp án D.
Từ bảng biến thiên ta thấy, tính từ trái qua phải:
Dấu của \(y’\) đổi dấu từ (+) sang (-) khi qua \(x = 0,\) nên tại \(x = 0\) hàm số đạt cực đại.
Dấu của \(y’\) đổi dấu từ (-) sang (+) khi qua \(x = 1,\) nên tại \(x = 1\) hàm số đạt cực tiểu.====== **** mời các bạn xem câu tiếp bên dưới **** =====
- \(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right)\) bằng
Câu hỏi:
\(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right)\) bằng
A.\( – 1.\)
B. 3.
Đáp án chính xác
C.\( – 3.\)
D. 1.
Trả lời:
Đáp án B.
Ta có: \(\mathop {\lim }\limits_{x \to – 1} \left( {1 – x – {x^3}} \right) = 1 – \left( { – 1} \right) – {\left( { – 1} \right)^3} = 3.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho khối lăng trụ có diện tích đáy \(B = 6\) và chiều cao \(h = 3.\) Thể tích của khối lăng trụ đã cho bằng
Câu hỏi:
Cho khối lăng trụ có diện tích đáy \(B = 6\) và chiều cao \(h = 3.\) Thể tích của khối lăng trụ đã cho bằng
A. 18.
Đáp án chính xác
B. 54.
C. 36.
D. 2.
Trả lời:
Đáp án A.
Thể tích khối lăng trụ là \(V = Bh = 6.3 = 18.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====