Câu hỏi:
Gọi \({x_1}\),\({x_2}\)\(\left( {{x_1} < {x_2}} \right)\) là hai nghiệm của phương trình \({2^{{x^2} – 3x + 2}} = {3^{1 – x}}\). Khi đó \(S = {4^{{x_1}}} + {2^{{x_2} – 1}}\) bằng
A. \(\frac{{25}}{9}\).
Đáp án chính xác
B. \(\frac{{16}}{9}\).
C. \(\frac{9}{{16}}\).
D. \(2021\).
Trả lời:
Lời giải
Lấy logarít cơ số 2 hai vế ta được phương trình
\(({x^2} – 3x + 2) = (1 – x){\log _2}3 \Leftrightarrow (x – 1)(x – 2) + (x – 1){\log _2}3 = 0 \Leftrightarrow (x – 1)(x – 2 + {\log _2}3)\)
\( \Leftrightarrow \left[ \begin{array}{l}x = 1 = {x_2}\\x = 2 – {\log _2}3 = {x_1}\end{array} \right.\)
Do đó \(S = {4^{{x_1}}} + {2^{{x_2} – 1}} = {4^{2 – {{\log }_2}3}} + {2^0} = \frac{{25}}{9}\).
Chọn đáp án A
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?
Câu hỏi:
Bạn muốn mua một áo sơ mi cỡ 40 hoặc 41. Áo cỡ 40 có 6 màu khác nhau, áo cỡ 41 có 4 màu khác nhau. Hỏi bạn có bao nhiêu cách chọn?
A. \(24\).
B. \(10\).
Đáp án chính xác
C. \(45\).
D. \(50\).
Trả lời:
Lời giải
Chọn một áo sơ mi cỡ 40 có 6 cách.
Chọn một áo sơ mi cỡ 41 có 4 cách.
Theo qui tắc cộng, ta có: \(6 + 4 = 10\) cách chọn một áo sơ mi.
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = – 3\). Số số hạng thứ 4 của cấp số nhân bằng
Câu hỏi:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu tiên \({u_1} = 2\) và công bội \(q = – 3\). Số số hạng thứ 4 của cấp số nhân bằng
A. \(24\).
B. \(54\).
C. \( – 54\).
Đáp án chính xác
D. \( – 24\).
Trả lời:
Lời giải
Số hạng tổng quát của cấp số nhân là: \({u_n} = {u_1}.{q^{n – 1}}\)
Số số hạng thứ 4 của cấp số nhân là: \({u_4} = 2.{\left( { – 3} \right)^3} = – 54\).
Chọn đáp án C====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Nghiệm của phương trình \({3^{1 – 2x}} = \frac{1}{3}\)là
Câu hỏi:
Nghiệm của phương trình \({3^{1 – 2x}} = \frac{1}{3}\)là
A. \(x = – 1\).
B. \(x = 0\).
C. \(x = 2\).
D. \(x = 1\).
Đáp án chính xác
Trả lời:
Lời giải
Ta có: \({3^{1 – 2x}} = \frac{1}{3} \Leftrightarrow {3^{1 – 2x}} = {3^{ – 1}} \Leftrightarrow 1 – 2x = – 1 \Leftrightarrow x = 1\).
Chọn đáp án D====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng
Câu hỏi:
Thể tích của khối lăng trụ có đáy là hình vuông cạnh 2 và chiều cao 3 bằng
A. \(4\).
B. \(12\).
Đáp án chính xác
C. \(8\).
D. \(18\).
Trả lời:
Lời giải
Ta có: \(V = h.B = {3.2^2} = 12\).
Chọn đáp án B====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập xác định của hàm số \(y = {\log _3}\left( {4 – {x^2}} \right) + {2^{1 – 2x}}\) là
Câu hỏi:
Tập xác định của hàm số \(y = {\log _3}\left( {4 – {x^2}} \right) + {2^{1 – 2x}}\) là
A. \(D = \left( { – 2;2} \right)\).
Đáp án chính xác
B. \(D = \left[ { – 2;2} \right]\).
C. \(D = \left( {2; + \infty } \right)\).
D. \(D = \left( {4; + \infty } \right)\).
Trả lời:
Lời giải
Lưu ý:hàm số \(y = {\log _a}f\left( x \right)\) xác định khi và chỉ khi \(f\left( x \right) >0.\) Hàm số \(y = {a^x}\) xác định với mọi \(x \in \mathbb{R}.\)
Do đó: hàm số đã cho xác định khi và chỉ khi \(4 – {x^2} >0 \Leftrightarrow – 2 < x < 2\).
Chọn đáp án A====== **** mời các bạn xem câu tiếp bên dưới **** =====