Câu hỏi:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với \(AB = 2a,AD = 3a.\) Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Gọi E là trung điểm của CD, tính khoảng cách giữa BE và SA
A. \(\frac{{3a\sqrt 2 }}{2}.\)
B. \(\frac{{6a\sqrt {13} }}{{13}}.\)
Đáp án chính xác
C. \(\frac{{3a}}{4}.\)
D. \(\frac{{12a}}{5}.\)
Trả lời:
Đáp án B
Áp dụng công thức nhanh \(\frac{1}{{{d^2}}} = \frac{1}{{{c^2}}} + \frac{{{k^2}}}{{{h^2}}}\) trong đó \(h = SH = a\sqrt 3 ,c = d\left( {A;BE} \right)\)
Suy ra \(\frac{1}{{{c^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{M^2}}} = \frac{1}{{{2^2}}} + \frac{1}{{{6^2}}}\) và \(k = \frac{{AH}}{{AB}} = \frac{1}{2}\)
Thay vào công thức ta được \(d = \frac{{6a\sqrt {13} }}{{13}}.\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz cho \(E\left( { – 1;0;2} \right)\) và \(F\left( {2;1; – 5} \right).\) Phương trình đường thẳng EF là
Câu hỏi:
Trong không gian Oxyz cho \(E\left( { – 1;0;2} \right)\) và \(F\left( {2;1; – 5} \right).\) Phương trình đường thẳng EF là
A. \(\frac{{x – 1}}{3} = \frac{y}{1} = \frac{{z + 2}}{{ – 7}}.\)
B. \(\frac{{x + 1}}{3} = \frac{y}{1} = \frac{{z – 2}}{{ – 7}}.\)
Đáp án chính xác
C. \(\frac{{x – 1}}{1} = \frac{y}{1} = \frac{{z + 2}}{{ – 3}}.\)
D. \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{{z – 2}}{3}.\)
Trả lời:
Đáp án B
Đường thẳng EF có véc tơ chỉ phương \(\overrightarrow {EF} = \left( {3;1; – 7} \right) \Rightarrow \left( {EF} \right):\frac{{x + 1}}{3} = \frac{y}{1} = \frac{{z – 2}}{{ – 7}}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đâyA. \(\left( { – 4;0} \right).\)
B. \(\left( {2; + \infty } \right).\)
Đáp án chính xác
C. \(\left( { – 2;2} \right).\)
D. \(\left( {0;4} \right).\)
Trả lời:
Đáp án B
Hàm số đã cho nghịch biến trên từng khoảng \(\left( { – 2;0} \right),\left( {2; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập tất cả các số thực x thỏa mãn \({\left( {\frac{2}{3}} \right)^{4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}}\) là:
Câu hỏi:
Tập tất cả các số thực x thỏa mãn \({\left( {\frac{2}{3}} \right)^{4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}}\) là:
A. \(\left[ { – \frac{2}{3}; + \infty } \right).\)
Đáp án chính xác
B. \(\left[ {\frac{2}{5}; + \infty } \right).\)
C. \(\left( { – \infty ;\frac{2}{5}} \right].\)
D. \(\left( { – \infty ;\frac{2}{3}} \right].\)
Trả lời:
Đáp án A
Biến đổi về \({\left( {\frac{3}{2}} \right)^{ – 4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}} \Rightarrow – 4x \le 2 – x \Rightarrow x \ge – \frac{2}{3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân \(\left( {{u_n}} \right)\), với \({u_1} = – 9,{u_4} = \frac{1}{3}.\) Công bộ của cấp số nhân đã cho bằng
Câu hỏi:
Cho cấp số nhân \(\left( {{u_n}} \right)\), với \({u_1} = – 9,{u_4} = \frac{1}{3}.\) Công bộ của cấp số nhân đã cho bằng
A. \(\frac{1}{3}.\)
B. \( – 3.\)
C. 3.
D. \( – \frac{1}{3}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \({u_4} = {u_1}.{q^3} \Rightarrow \frac{1}{3} = – 9.{q^3} \Rightarrow {q^3} = – \frac{1}{{27}} \Rightarrow q = – \frac{1}{3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
Câu hỏi:
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
A. \(y = \frac{{ – x + 2}}{{x – 1}}.\)
B. \(y = \frac{{x – 1}}{{x + 1}}.\)
C. \(y = \frac{{ – x – 2}}{{x – 1}}.\)
Đáp án chính xác
D. \(y = \frac{{x – 2}}{{x – 1}}.\)
Trả lời:
Đáp án C
ĐTHS có tiệm cận đứng \(x = 1 \Rightarrow \) Loại B
ĐTHS có tiệm cận ngang \(y = – 1 \Rightarrow \) Loại D
Hàm số đồng biến trên từng khoảng xác định \( \Rightarrow \) Loại A vì có \(y’ = \frac{{ – 1}}{{{{\left( {x – 1} \right)}^2}}}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====