Câu hỏi:
Cho hàm số \(f\left( x \right)\) có đồ thị hàm số \(y = f’\left( x \right)\) được cho như hình vẽ bên. Hàm số \(y = \left| {f\left( x \right) + \frac{1}{2}{x^2} – f\left( 0 \right)} \right|\) có nhiều nhất bao nhiêu điểm cực trị trong khoảng \(\left( { – 2;3} \right)\)?
A. 6.
B. 2.
C. 5.
D. 3.
Đáp án chính xác
Trả lời:
Đáp án D
Xét hàm số: \(h\left( x \right) = f\left( x \right) + \frac{1}{2}{x^2} – f\left( 0 \right).\)
Ta có \(h’\left( x \right) = f’\left( x \right) + x;h’\left( x \right) = 0 \Leftrightarrow f’\left( x \right) = – x\)
Nghiệm phương trình là hoành độ giao điểm của hai đồ thị \(y = – x\) và \(y = f’\left( x \right)\)
Dựa vào đồ thị suy ra phương trình: \(f’\left( x \right) = – x\) có ba nghiệm \(\left[ \begin{array}{l}x = – 2\\x = 0\\x = 2\end{array} \right.\)
Trên khoảng \(\left( { – 2;3} \right)\), hàm số \(h\left( x \right)\) có một điểm cực trị là\(x = 2,\) (do qua nghiệm \(x = 0,h’\left( x \right)\) không đổi dấu). Do đó đồ thị hàm số \(y = h\left( x \right)\) cắt trục hoành tối đa 2 điểm.
Suy ra hàm số \(y = \left| {h\left( x \right)} \right|\) có tối đa \(2 + 1 = 3\) điểm cực trị trong khoảng \(\left( { – 2;3} \right).\)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Trong không gian Oxyz cho \(E\left( { – 1;0;2} \right)\) và \(F\left( {2;1; – 5} \right).\) Phương trình đường thẳng EF là
Câu hỏi:
Trong không gian Oxyz cho \(E\left( { – 1;0;2} \right)\) và \(F\left( {2;1; – 5} \right).\) Phương trình đường thẳng EF là
A. \(\frac{{x – 1}}{3} = \frac{y}{1} = \frac{{z + 2}}{{ – 7}}.\)
B. \(\frac{{x + 1}}{3} = \frac{y}{1} = \frac{{z – 2}}{{ – 7}}.\)
Đáp án chính xác
C. \(\frac{{x – 1}}{1} = \frac{y}{1} = \frac{{z + 2}}{{ – 3}}.\)
D. \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{{z – 2}}{3}.\)
Trả lời:
Đáp án B
Đường thẳng EF có véc tơ chỉ phương \(\overrightarrow {EF} = \left( {3;1; – 7} \right) \Rightarrow \left( {EF} \right):\frac{{x + 1}}{3} = \frac{y}{1} = \frac{{z – 2}}{{ – 7}}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đây
Câu hỏi:
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như hình vẽ như sau
Hàm số đã cho nghịch biến trên khoảng nào dưới đâyA. \(\left( { – 4;0} \right).\)
B. \(\left( {2; + \infty } \right).\)
Đáp án chính xác
C. \(\left( { – 2;2} \right).\)
D. \(\left( {0;4} \right).\)
Trả lời:
Đáp án B
Hàm số đã cho nghịch biến trên từng khoảng \(\left( { – 2;0} \right),\left( {2; + \infty } \right)\).====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Tập tất cả các số thực x thỏa mãn \({\left( {\frac{2}{3}} \right)^{4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}}\) là:
Câu hỏi:
Tập tất cả các số thực x thỏa mãn \({\left( {\frac{2}{3}} \right)^{4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}}\) là:
A. \(\left[ { – \frac{2}{3}; + \infty } \right).\)
Đáp án chính xác
B. \(\left[ {\frac{2}{5}; + \infty } \right).\)
C. \(\left( { – \infty ;\frac{2}{5}} \right].\)
D. \(\left( { – \infty ;\frac{2}{3}} \right].\)
Trả lời:
Đáp án A
Biến đổi về \({\left( {\frac{3}{2}} \right)^{ – 4x}} \le {\left( {\frac{3}{2}} \right)^{2 – x}} \Rightarrow – 4x \le 2 – x \Rightarrow x \ge – \frac{2}{3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho cấp số nhân \(\left( {{u_n}} \right)\), với \({u_1} = – 9,{u_4} = \frac{1}{3}.\) Công bộ của cấp số nhân đã cho bằng
Câu hỏi:
Cho cấp số nhân \(\left( {{u_n}} \right)\), với \({u_1} = – 9,{u_4} = \frac{1}{3}.\) Công bộ của cấp số nhân đã cho bằng
A. \(\frac{1}{3}.\)
B. \( – 3.\)
C. 3.
D. \( – \frac{1}{3}.\)
Đáp án chính xác
Trả lời:
Đáp án D
Ta có \({u_4} = {u_1}.{q^3} \Rightarrow \frac{1}{3} = – 9.{q^3} \Rightarrow {q^3} = – \frac{1}{{27}} \Rightarrow q = – \frac{1}{3}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
Câu hỏi:
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây
A. \(y = \frac{{ – x + 2}}{{x – 1}}.\)
B. \(y = \frac{{x – 1}}{{x + 1}}.\)
C. \(y = \frac{{ – x – 2}}{{x – 1}}.\)
Đáp án chính xác
D. \(y = \frac{{x – 2}}{{x – 1}}.\)
Trả lời:
Đáp án C
ĐTHS có tiệm cận đứng \(x = 1 \Rightarrow \) Loại B
ĐTHS có tiệm cận ngang \(y = – 1 \Rightarrow \) Loại D
Hàm số đồng biến trên từng khoảng xác định \( \Rightarrow \) Loại A vì có \(y’ = \frac{{ – 1}}{{{{\left( {x – 1} \right)}^2}}}.\)====== **** mời các bạn xem câu tiếp bên dưới **** =====