Trắc nghiệm Khái niệm về thể tích của khối đa diện có đáp án – Toán 12
Câu 1: Tính thể tích V của hình chóp S.ABC có đáy là tam giác đều có cạnh bằng a, SA vuông góc với đáy, khoảng cách từ A đến mặt phẳng (SBC) bằng √3a/4 . Thể tích của hình chóp S.ABC là:
Gọi M là trung điểm của BC, H là chân đường vuông góc kẻ từ A đến SM. Khi đó khoảng cách từ A đến mặt phẳng (SBC) bằng AH. Ta có:
Do đó đáp án đúng là D
Câu 2: Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a√2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Gọi V là thể tích hình chóp S.ABC, V’ là thể tích hình chóp S.A’B’C. Tính tỉ số k = V’/V
Do CS = CB nên B’ là trung điểm của SB.
Ta có:
Đáp án : C
Cách khác: Từ (a) suy ra
Hai hình chóp C.SA’B’ và C.SBA cùng chiều cao nên
Nhận xét: Một số người không thấy được từ (a) có thể suy ngay ra (b) hoặc (c), mà lại từ đó rút ra tính SA’ để áp dụng công thức
sẽ mất nhiều thời gian.
Câu 3: Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a√2. Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Tính thể tích V của hình chóp S.A’B’C.
Cách 1. Áp dụng ví dụ 2, ta có
Từ đó suy ra
Đáp án A.
Cách 2. Dễ thấy
Khoảng cách từ B’ đến mặt (SAC) bằng
Ta có ΔSCA’ ∾ ΔSAC , tỉ số đồng dạng là
Cách 3. Dễ thấy CA’ ⊥ (SAB), CB’ = SB’ = a
Tính
Câu 4: (Đề thi minh họa môn toán kì thi THPTQG năm 2017 của bộ GD-ĐT)
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a√2 , tam giác SAD cân tại S, mặt bên (SAD) vuông góc với mặt phẳng đáy. Biết thể tích S.ABCD bằng 4a3/3. Tính khoảng cách h từ B đến mặt phẳng (SCD).
Cách 1. Gọi H là trung điểm của AD, vì ΔASD cân ở S nên SH ⊥ AD.
Vì (SAD)⊥(ABCD) nên SH ⊥ (ABCD). Kẻ HI ⊥ SD.
Vì DC ⊥ AD, DC ⊥ SH nên DC ⊥ (SAD). Do đó DC ⊥ HI.
Kết hợp với HI ⊥ SD, suy ra HI ⊥ (SDC).
Vì AB // (SDC) nên d(B; (SDC)) = d(A; (SDC)) = 2HI
Ta có
Ta lại có
Đáp án B.
Cách 2. Ta có: SH = 2a;
Để ý rằng
Đáp án B.
Câu 5: Cho tứ diện ABCD, có các cạnh DA, DB, DC đôi một vuông góc với nhau. Biết rằng DA = a, DB = a√2, DC = 2a. Tính diện tích S của tam giác ABC.
Kẻ DI ⊥ AB, DH ⊥ CI. Khi đó DH ⊥ (BCA).
Suy ra
Chọn D.
Câu 6: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên bằng a√2. Mặt phẳng (P) qua A và vuông góc với SC cắt SB, SC, SD lần lượt tại E, I, F. Tính tỉ số k giữa thể tích hình chóp S.AEIF và thể tích hình chóp S.ABCD.
Cách 1. Do các cạnh bên bằng nhau nên hình chiếu của S lên (ABCD) phải trùng với tâm H của hình vuông ABCD.
Dễ thấy I là trung điểm của SC, vì BD ⊥ SC, nên BD//(P). Do đó EF // BD. Để ý rằng EF đi qua trọng tâm J của tam giác SDB.
Chọn B.
Cách 2. Tính trực tiếp. Dễ thấy EF ⊥ AI
Câu 7: Cho hình chóp S.ABCD có đáy là hình chữ nhật, hình chiếu của S lên đáy trùng với trung điểm của AB. Tính thể tích V của hình chóp đã cho, biết rằng AB = a, BC = a√6 , khoảng cách từ A đến mặt (SCD) bằng √6a/3
Gọi M, N lần lượt là trung điểm của AB, CD, H là chân đường vuông góc kẻ từ M tới SN. Khi đó SM ⊥ (ABCD). Vì AB // CD nên AB // (ABCD), do đó d(A, (SCD)) = d(M, (SCD)) = MH
Ta có
Đáp án C.
Câu 8: Cho hình chóp S.ABCD, có đáy là hình vuông cạnh a, SCD là tam giác đều và (SCD) vuông góc với đáy. Tính khoảng cách h từ A đến mặt phẳng (SBD).
Gọi H là trung điểm của CD, dễ thấy SH là đường cao của hình chóp.
Suy ra
Để ý rằng SB2 = SH2 + BH2 = SH2 + BC2 + CH2 = 3a2/4 + a2 + a2/4 = 2a2.
Suy ra BS = BD = a√2, gọi K là trung điểm của SD ta có:
Đáp án C.
Câu 9: Cho hình hộp ABCD.A’B’C’D’. Gọi E, F tương ứng là trung điểm của các cạnh A’A, C’C. Gọi M = (D’E) ∩ (DA), N = (D’F) ∩ (DC). Tính tỉ số giữa thể tích hình chóp D’.DMN và thể tích hình hộp ABCD.A’B’C’D’
Dễ thấy MN đi qua B, MD = 2AD, ND = 2CD. Hình chóp và hình hộp nói trên có chung chiều cao h .
Nếu diện tích đáy của hình hộp bằng S thì diện tích đáy của hình chóp bằng 2S.
Ta có:
Chọn B.
Câu 10: Cho hình hộp ABCD.A’B’C’D’. Gọi E, F tương ứng là trung điểm các cạnh A’A, C’C. Mặt phẳng (D’EF) chia hình hộp thành hai hình đa diện. Gọi (H) là hình đa diện chứa đỉnh A, (H’) là hình đa diện còn lại. Tính tỉ số k giữa thể tích hình (H) và thể tích hình (H’).
Gọi M = (D’E) ∩ (DA), N = (D’F) ∩ (DC). Dễ thấy MN đi qua B, các hình chóp E.AMB và F.CNB có diện tích đáy và chiều cao bằng nhau. Áp dụng công thức (7) ta có :
Áp dụng ví dụ 9, ta có :
Suy ra V(H) = V(H’). Do đó k = 1 .
D là đáp án đúng.
Câu 11: Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a, góc giữa mặt bên và mặt đáy bằng 60°. Tính theo a thể tích khối chóp S.ABCD
Gọi O là tâm hình vuông ABCD, M là trung điểm CD.
Khi đó SO là đường cao hình chóp, góc SMO là góc giữa mặt bên và mặt đáy của hình chóp.
Chọn đáp án A.
Câu 12: Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a. Mặt bên tạo với mặt đáy một góc 60°. Tính thể tích V của hình chóp S.ABC.
Gọi H là tâm của tam giác ABC. Trong (SBC), kẻ SI vuông góc BC.
Do góc giữa mặt bên và mặt đáy là 600 suy ra
Chọn đáp án D.
Câu 13: Khối chóp đều S.ABCD có tất cả các cạnh đều bằng a. Khi đó độ dài đường cao h của khối chóp là:
Gọi O là tâm của hình vuông ABCD.
Ta có : OA = OB = OC = OD và SA = SB = SC = SD
Suy ra : SO là trục đường tròn ngoại tiếp ABCD
⇒ SO ⊥ (ABCD)
Ta có :
Câu 14: Hình chóp tứ giác đều có tất cả các cạnh bằng a. Thể tích khối chóp đó bằng:
Câu 15: Cho tứ diện ABCD có các cạnh BA, BC, BD đôi một vuông góc với nhau: BA = 3a, BC =BD = 2a. Gọi M và N lần lượt là trung điểm của AB và AD Tính thể tích khối chóp C.BDNM
Câu 16: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, SA vuông góc với mặt đáy (ABCD), AB = a, AD = 2. Góc giữa cạnh bên SB và mặt phẳng (ABCD) bằng 45°. Thể tích hình chóp S.ABCD bằng
Câu 17: Cho hình chóp tam giác đều đáy có cạnh bằng a, góc tạo bởi các mặt bên và đáy bằng 60°. Thể tích khối chóp là:
Câu 18: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB = a, AC = a√2 , SA vuông góc với mp đáy. Góc tạo bởi (SBC) và mặt đáy bằng 30°. Thể tích S.ABC bằng
Câu 19: Cho khối chóp S.ABC. Trên 3 cạnh SA, SB, SC lần lượt lấy 3 điểm A’, B’, C’ sao cho . Gọi V và V’ lần lượt là thể tích của các khối chóp S.ABC và S’.A’B’C’ . Khi đó tỷ số là:
Câu 20: Cho lăng trụ tam giác đều ABC.A’B’C’ có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60° AB = a. Khi đó thể tích của khối ABCC’B’ bằng:
Câu 21:Tính thể tích V của khối hộp chữ nhật ABCD.A’B’C’D’ , biết AB = a , AD = a√2 và AC’ hợp với đáy một góc 60°.
Câu 22:Cho hình chóp S.ABCD có SC ⊥ (ABCD), đáy ABCD là hình thoi có cạnh bằng a√3 và . Biết rằng góc giữa hai mặt phẳng (SAB) và (ABCD) bằng 45°. Tính theo a thể tích khối chóp S.ABCD
Câu 23:Cho hình chóp đều S.ABCD có cạnh đáy bằng a, biết góc giữa cạnh bên và mặt đáy bằng 45°. Tính thể tích V của khối chóp S.ABCD.
Câu 24:Một hình chóp tam giác đều có cạnh đáy bằng a và cạnh bên bằng b. Thể tích của khối chóp đó là:
Câu 25:Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Cạnh bên SA vuông góc với mặt phẳng đáy, cạnh bên SC tạo với mặt phẳng (SAB) một góc 30°. Thể tích của khối chóp đó bằng:
Câu 26:Cho khối chóp S.ABC với SA ⊥ SB , SB ⊥ SC , SC ⊥SA . Biết độ dài SA, SB, SC lần lượt là 3, 5, 6. Thể tích của khối chóp đó bằng:
A. 20
B. 10
C. 15
D. 30
Câu 27:Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a; mặt bên SAB nằm trong mặt phẳng vuông góc với mặt phẳng đáy và tam giác SAB vuông cân tại S. Tính thể tích V của khối chóp S.ABC.
Câu 28:Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại đỉnh B, AB = a, SA = 2a và SA vuông góc với mặt phẳng đáy. Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích khối tứ diện S.AHK.
Câu 29:Hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a√2; SA ⊥ (ABCD) , góc giữa SC và đáy bằng 60°. Thể tích hình chóp S.ABCD bằng:
Câu 30:Cho hình chóp S.ABC có đáy là tam giác đều. Nếu tăng độ dài cạnh đáy lên 2 lần và độ dài đường cao không đổi thì thể tích S.ABC tăng lên bao nhiêu lần?
A.4 .
B.2 .
C.3 .
D.1/2 .
Khi độ dài cạnh đáy tăng lên 2 lần thì diện tích đáy tăng lên 4 lần.
⇒ Thể tích khối chóp tăng lên 4 lần.
Chọn A
Câu 31:Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B . Biết ΔSAB là tam giác đều và thuộc mặt phẳng vuông góc với mặt phẳng (ABC) . Tính thể tích khối chóp S.ABC biết AB = a, AC = a√3.
Câu 32:Cho hình chóp S.ABCD có đáy ABCD là hình thoi. Mặt bên (SAB) là tam giác vuông cân tại S và thuộc mặt phẳng vuông góc với mặt phẳng (ABCD) . Tính thể tích khối chóp S.ABCD biết BD = a, AC = a√3 .
Câu 33:Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A . Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của BC . Tính thể tích khối chóp S.ABC biết AB = a, AC = a√3, SB = a√2.
Câu 34:Cho hình chóp S.ABCD có đáy ABCD hình vuông cạnh a . Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AD . Tính thể tích khối chóp S.ABCD biết SB = 3a/2 .
Câu 35:Hình chóp S.ABCD đáy là hình vuông cạnh a, SD = a√13/2 . Hình chiếu của S lên (ABCD) là trung điểm H của AB. Thể tích khối chóp là
Câu 36:Cho hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a√2 , SA ⊥(ABCD) góc giữa SC và đáy bằng 60°. Thể tích hình chóp S.ABCD bằng:
Theo bài ra ta có:
SA ⊥ (ABCD)
nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Câu 37:Hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a√2 , SA ⊥(ABCD) góc giữa SC và đáy bằng 60°. Thể tích hình chóp S.ABCD bằng:
SA ⊥ (ABCD)
nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Xét ΔABC vuông tại B, có
Câu 38:Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, cạnh BC = a√2 , cạnh bên SA vuông góc với mặt phẳng đáy; mặt bên (SBC) tạo với mặt đáy (ABC) một góc bằng 45°. Thể tích khối chóp S.ABC theo a bằng
Câu 39:Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC) và tam giác ABC cân tại A. Cạnh bên SB lần lượt tạo với mặt phẳng đáy, mặt phẳng trung trực của BC các góc bằng 30° và 45°, khoảng cách từ S đến cạnh BC bằng a. Tính thể tích khối chóp S.ABC
Câu 40:Cho hình chóp S.ABCD có cạnh đáy ABCD là hình vuông tâm O cạnh bằng a, SA vuông góc với (ABCD) và SA = 2a . Gọi I là trung điểm của SC và M là trung điểm của DC . Tính thể tích của khối chóp I.OBM .
Câu 41:Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, BAD = 120°, SA vuông góc với (ABCD). Gọi M, I lần lượt là trung điểm của BC và SB, góc giữa SM và (ABCD) bằng 60°. Khi đó thể tích của khối chóp I.ABCD bằng
Câu 42:Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, . Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ACD.
Câu 43:Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, có BC = a . Mặt bên SAC vuông góc với đáy các mặt bên còn lại đều tạo với mặt đáy một góc 45°. Thể tích khối chóp S.ABC bằng
Câu 44:Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), = 30°, SA = 2a Tính thể tích V của khối chóp S.ABCD .
Câu 45:Cho tứ diện ABCD có ABC là tam giác đều cạnh a tam giác BCD cân tại D và nằm trong mặt phẳng vuông góc với (ABC). Biết AD hợp với mặt phẳng (ABC) một góc 60° Tính thể tích V của khối tứ diện ABCD
Câu 46:Cho hình chóp S.ACBD có đáy là hình vuông cạnh a mặt bên SAB nằm trong mặt phẳng vuông góc với (ABCD), = 60°, SA = 2a Tính thể tích V của khối chóp S.ABCD
Câu 47:Cho hình chóp S.ABCD có đáy là hình chữ nhật ABCD, BC = 2AB = 2a tam giác SAC nằm trong mặt phẳng vuông góc với (ABCD), = 60°, SA = 2a Tính thể tích V của khối chóp S.ABCD
Câu 48:Cho hình chóp S.ABCD có đáy là hình vuông tâm O, AB = a. Hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm đoạn OA. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Tính thể tích V của hình chóp S.ABCD .
Câu 49:Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh bằng 1 góc = 60° Cạnh bên SD = √2 Hình chiếu vuông góc của S trên mặt phẳng (ABCD) là điểm H thuộc đoạn BD sao cho HD = 3HB Tính thể tích khối chóp S.ABCD .
Câu 50:Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm của BC và SA hợp với đáy một góc 60° Tính thể tích V của khối chóp S.ABC
Câu 51:Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm của BC và (SAB) hợp với đáy một góc 45° Tính thể tích V của khối chóp S.ABC
Câu 52:Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, cạnh AB = 2, = 60° . Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của BC. Góc giữa SA và mặt phẳng đáy bằng 45°. Tính thể tích khối chóp S.ABC .
Câu 53:Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a , mặt SAC là tam giác vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a√3 . Tính thể tích khối chóp S.ABCD.
Câu 54:Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B; AB = a , BC = a√2 ; mặt phẳng (A’BC) hợp với mặt đáy (ABC) góc 30°. Thể tích của khối lăng trụ là:
Câu 55:Hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, hình chiếu vuông góc của S trên mặt phẳng (ABCD) trùng với trung điểm của AD; M là trung điểm CD; cạnh bên SB hợp với đáy góc 60°. Thể tích của khối chóp S.ABM là:
Câu 56:Cho khối chóp S.ABC có đáy ABC là tam giác cân tại A với BC = 2a , = 120° biết SA ⊥ (ABC) và mặt (SBC) hợp với đáy một góc 45°. Tính thể tích khối chóp S.ABC .
Câu 57:Một lăng trụ tam giác ABC.A’B’C’ có đáy là tam giác đều ABC cạnh a. Cạnh bên bằng b và hợp với mặt đáy góc 60°. Thể tích hình chóp A’.BCC’B’ bằng bao nhiêu?
Câu 58:Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho CH→ = 2HB→, SB hợp với đáy một góc 60° Tính thể tích V của khối chóp S.ABC
Câu 59:Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho HC→ = 2BH→, SA hợp với đáy một góc 60° Tính thể tích V của khối chóp S.ABC
Câu 60:Cho hình chóp S.ABC có đáy là tam giác đều cạnh a hình chiếu vuông góc của S trên mặt phẳng (ABC) là điểm H trên cạnh BC sao cho HC→ = 2BH→, (SAB) hợp với đáy một góc 60° Tính thể tích V của khối chóp S.ABC
Câu 61:Cho hình chóp S.ABC có các cạnh SA = A, SB = 2, SC = 3, AB = √3, BC = CA = √7 . Tính thể tích V khối chóp S.ABC.
Câu 62:Thể tích khối lăng trụ tam giác đều có cạnh đáy bằng a và cạnh bên bằng 2a là:
Câu 63:Gọi V là thể tích của hình lập phương ABCD.A’B’C’D’ . V1 là thể tích của tứ diện A’ABD . Hệ thức nào sau đây là đúng ?
A. V = 6V1
B. V = 4V1
C. V = 3V1
D. V = 2V1
Câu 64:Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông cân tại B và AC = 2a biết rằng (A’BC) hợp với đáy (ABC) một góc 45°. Thể tích lăng trụ là:
Câu 65:Cho khối lăng trụ tam giác đều ABC. A1B1C1 có tất cả các cạnh bằng a. Gọi M là trung điểm của AA1. Thể tích khối chóp M.BCA1 là:
Câu 66:Cho lăng trụ tam giác đều ABC.A’B’C’, cạnh đáy bằng a. Gọi N, I lần lượt là trung điểm của AB, BC; góc giữa hai mặt phẳng (C’AI) và (ABC) bằng 60° . Tính theo a thể tích khối chóp NAC’I?
Câu 67:Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a và (A’BC) hợp với mặt đáy (ABC) một góc 30° . Tính thể tích hình chóp A’.ABC là
Câu 68:Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác đều cạnh a. Mặt phẳng (AB’C’) tạo với mặt đáy góc 60° . Tính theo a thể tích lăng trụ ABC.A’B’C’.
Câu 69:Cho lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại B, AB = 3a, BC = a√2 , mặt bên (A’BC) hợp với mặt đáy (ABC) một góc 60°. Tính thể tích khối lăng trụ.
Câu 70:Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại A, AC = a, = 60° . Đường chéo B’C tạo với mặt phẳng (AA’C’C) một góc 30°. Tính thể tích của khối lăng trụ theo a.
Vì A’B’ ⊥ (ACC’)
Suy ra = 30° là góc tạo bởi đường chéo BC’và mặt phẳng (AA’C’C).
Câu 71:Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a; BC = 2a; AA’= a. Lấy điểm M trên cạnh AD sao cho AM = 3MD. Tính thể tích khối chóp M.AB’C.
Thể tích khối chóp M.AB’C bằng thể tích khối chóp B’.AMC
Câu 72:Cho hình hộp đứng ABCD.A’B’C’D’ có đáy là hình vuông cạnh a. Khoảng cách từ điểm A đến mặt phẳng (A’BCD’) bằng . Tính thể tích hình hộp theo a.
Câu 73:Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, D^ = 60° và SA vuông góc với (ABCD). Biết thể tích của khối chóp S.ABCD bằng . Tính khoảng cách k từ A đến mặt phẳng (SBC) .
Câu 74:. Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a. Mặt bên ABB’A’ có diện tích bằng a2√3 . Gọi M; N lần lượt là trung điểm của A’B; A’C . Tính tỉ số thể tích của hai khối chóp A’. AMN và A’.ABC .
Câu 75:Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a. Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB. Mặt bên (AA’C’C) tạo với đáy một góc bằng 45°. Thể tích khối lăng trụ bằng:
Câu 76:Cho hình lăng trụ ABC.A’B’C’, đáy ABC có AC = a√3; BC = 3a, = 30° . Cạnh bên hợp với mặt phẳng đáy góc 60° và mặt phẳng (A’BC) vuông góc với mặt phẳng (ABC). Điểm H trên cạnh BC sao cho BC = 3BH và mặt phẳng (A’AH) vuông góc với mặt phẳng (ABC). Thể tích khối lăng trụ ABC.A’B’C’ bằng:
Câu 77:Cho hình lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh bằng a. Hình chiếu vuông góc của A’ xuống mặt phẳng (ABC) là trung điểm của AB. Mặt bên (AA’C’C) tạo với đáy một góc bằng 45°. Thể tích của khối lăng trụ ABC.A’B’C’ bằng:
Câu 78:Cho lăng trụ tam giác ABC.A’B’C’ đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc H của A’ trên mặt phẳng (ABC) trùng với trực tâm của tam giác ABC. Tất cả các cạnh bên đều tạo với mặt phẳng đáy góc 60° . Thể tích của khối lăng trụ ABC.A’B’C’là:
Gọi I là giao điểm của AH và BC
Theo giả thiết H là trực tâm của tam giác đều ABC nên AH là đường cao và H cũng lả trọng tâm của tam giác đều ABC
Câu 79:Cho lăng trụ ABC.A’B’C’ có đáy ABC là tam giác đều cạnh a, cạnh bên tạo với mặt phẳng bằng 45°. Hình chiếu của A trên mặt phẳng (A’B’C’) trùng với trung điểm của A’B’. Tính thể tích V của khối lăng trụ theo a.
Câu 80:Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, = 120° và AA’ = 7a/2 . Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
A. V = 12a3
B. V = 3a3
C. V = 9a3
D. V = 6a3