Câu hỏi:
Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AC = 2R. Gọi K và M lần lượt là chân đường cao hại từ A và C xuống BD, E là giao điểm của AC và BD, biết K thuộc đoạn BE ( ). Đường thẳng qua K song song với BC cắt AC tại P.a) Chứng minh tứ giác AKPD nội tiếp.b) Chứng minh c) Biết và AK = x. Tính BD theo R và x.
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn tâm O, đường kính AB = 2R. Lấy M∈O với AM < BM. Trên cạnh MB lấy điểm C sao cho MC = MA. Gọi OD là bán kính vuông góc với AB (M và D ở hai bên đường thẳng AB)a) Chứng minh AMB^=900. Tính theo R độ dài các cạnh củab) Chứng tỏ MD là phân giác AMB^=900 và MD⊥ACc) Chứng minh rằng D là tâm của đường tròn (ABC)d) Đường tròn (ABC) cắt MD tại I. Chứng minh I là tâm đường tròn nội tiếp ∆MAB
Câu hỏi:
Cho đường tròn tâm O, đường kính AB = 2R. Lấy với AM < BM. Trên cạnh MB lấy điểm C sao cho MC = MA. Gọi OD là bán kính vuông góc với AB (M và D ở hai bên đường thẳng AB)a) Chứng minh . Tính theo R độ dài các cạnh củab) Chứng tỏ MD là phân giác và c) Chứng minh rằng D là tâm của đường tròn (ABC)d) Đường tròn (ABC) cắt MD tại I. Chứng minh I là tâm đường tròn nội tiếp
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc đường tròn (O); D nằm giữa A và E, tia AD nằm giữa hai tia AB, AO).a) Chứng minh rằng A, B, O, C cùng thuộc một đường tròn và xác định tâm của đường tròn này.b) Chứng minh rằng AB2=AD.AEc) Gọi H là giao điểm của OA và BC. Chứng minh rằng ∆ADH~∆AEO và tứ giác DEOH nội tiếp.d) Đường thẳng AO cắt đường tròn (O) tại M, N (M nằm giữa A và O). Chứng minh rằng EHAN=MHAD
Câu hỏi:
Cho đường tròn (O; R) và điểm A nằm ngoài đường tròn (O). Vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là hai tiếp điểm). Vẽ cát tuyến ADE của đường tròn (O) (D, E thuộc đường tròn (O); D nằm giữa A và E, tia AD nằm giữa hai tia AB, AO).a) Chứng minh rằng A, B, O, C cùng thuộc một đường tròn và xác định tâm của đường tròn này.b) Chứng minh rằng c) Gọi H là giao điểm của OA và BC. Chứng minh rằng và tứ giác DEOH nội tiếp.d) Đường thẳng AO cắt đường tròn (O) tại M, N (M nằm giữa A và O). Chứng minh rằng
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho nửa đường tròn tâm O, đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E. Hai tiếp tuyến EM và Bx của (O) cắt nhau tại D (M thuộc (O))a) Chứng minh rằng 4 điểm O, M, D, B cùng thuộc một đường tròn.b) Chứng minh ∆EMA~∆EBM, suy ra EM2=EO2-R2c) Trên đoạn ME lấy điểm C sao cho hai góc CAM^, EDO^ bằng nhau. Chứng minh rằng OC // MB.d) Giả sử M là trung điểm đoạn ED. Tính EM theo R.
Câu hỏi:
Cho nửa đường tròn tâm O, đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E. Hai tiếp tuyến EM và Bx của (O) cắt nhau tại D (M thuộc (O))a) Chứng minh rằng 4 điểm O, M, D, B cùng thuộc một đường tròn.b) Chứng minh , suy ra c) Trên đoạn ME lấy điểm C sao cho hai góc bằng nhau. Chứng minh rằng OC // MB.d) Giả sử M là trung điểm đoạn ED. Tính EM theo R.
Trả lời:
a) Vì EM và BD là tiếp tuyến với đường tròn (O) nênVậy tứ giác DMOB nội tiếp, suy ra 4 điểm O, M, D, B cùng thuộc một đường tròn.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC nội tiếp đường tròn (O; R). Gọi đường tròn (I; r) đường tròn nội tiếp tam giác ABC, H là tiếp điểm của AB với đường tròn (I), D là giao điểm của AI với đường tròn (O), DK là đường kính của đường tròn (O). Gọi d là độ dài của OI. Chứng minh rằng:a) ∆AHI~∆KCDb) DI=DB=DCc) IA.ID=R2-d2d) d2=R2-2Rr
Câu hỏi:
Cho tam giác ABC nội tiếp đường tròn (O; R). Gọi đường tròn (I; r) đường tròn nội tiếp tam giác ABC, H là tiếp điểm của AB với đường tròn (I), D là giao điểm của AI với đường tròn (O), DK là đường kính của đường tròn (O). Gọi d là độ dài của OI. Chứng minh rằng:a) b) c) d)
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax của nửa đường tròn đó (Ax nằm trên cùng một nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc Cax cắt nửa đường tròn tại D. kéo dài AD và BC cắt nhau tại E. kẻ EH vuông góc với Ax tại H.a) Chứng minh tứ giác AHEC nội tiếp đường tròn.b) Chứng minh ABD^=BDC^c) Chứng minh tam giác ABE cân.d) Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi.
Câu hỏi:
Cho điểm C thuộc nửa đường tròn đường kính AB. Kẻ tiếp tuyến Ax của nửa đường tròn đó (Ax nằm trên cùng một nửa mặt phẳng có bờ là đường thẳng AB chứa nửa đường tròn). Tia phân giác của góc Cax cắt nửa đường tròn tại D. kéo dài AD và BC cắt nhau tại E. kẻ EH vuông góc với Ax tại H.a) Chứng minh tứ giác AHEC nội tiếp đường tròn.b) Chứng minh c) Chứng minh tam giác ABE cân.d) Tia BD cắt AC và Ax lần lượt tại F và K. Chứng minh AKEF là hình thoi.
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====