Lý thuyết Toán lớp 10 Bài 3: Tổ hợp
A. Lý thuyết
1. Định nghĩa
Cho tập hợp A gồm n phần tử và một số nguyên k với 1 ≤ k ≤ n.
Mỗi tập con gồm k phần tử được lấy ra từ n phần tử của A được gọi là một tổ hợp chập k của n phần tử đó.
QUẢNG CÁO
Ví dụ: Bạn Mai có 4 chiếc váy màu hồng, màu đỏ, màu trắng, màu tím. Mai muốn chọn 3 trong 4 chiếc váy để mang đi du lịch. Hãy viết các tổ hợp 3 của 4 chiếc áo váy đó.
Hướng dẫn giải
Các tổ hợp chập 3 của 4 chiếc váy là :
Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.
Vậy ta có 4 tổ hợp chập 3 của 4 chiếc váy là : Hồng – đỏ – trắng ; Hồng – đỏ – tím ; Đỏ – trắng – tím ; Hồng – trắng – tím.
2. Số các tổ hợp
Nhận xét : Một tổ hợp chập k của n phần tử nhiều gấp k! lần số tổ hợp chập k của n phần tử đó.
Kí hiệu là là số tổ hợp chập k của n phần tử với (1 ≤ k ≤ n). Ta có :
Quy ước 0! = 1 ; .
Với những quy ước trên, ta có công thức sau: (với 0 ≤ k ≤ n).
QUẢNG CÁO
Ví dụ: Một tổ có 8 người, bạn tổ trưởng muốn cử ra 4 bạn đi tập văn nghệ. Hỏi có bao nhiêu cách chọn ?
Hướng dẫn giải
Mỗi cách chọn 4 bạn trong 8 bạn đi trực nhật là một tổ hợp chập 4 của 8.
Ta có .
Vậy có 70 cách chọn 4 trong 8 bạn đi tập văn nghệ.
3. Tính chất của các số
Ta có hai đẳng thức sau : (0 ≤ k ≤ n) và (1 ≤ k < n).
Ví dụ: Ta có : ; .
B. Bài tập tự luyện
B.1 Bài tập tự luận
Bài 1. Một túi có 7 quả bóng xanh, 3 quả bóng vàng và 14 quả bóng đỏ. Lấy ngẫu nhiên ba quả bóng trong túi. Hỏi có bao nhiêu cách để lấy 3 quả bóng từ trong túi sao cho 3 quả bóng cùng màu.
Hướng dẫn giải
Để lấy 3 quả bóng cùng màu thì ta thực hiện một trong ba hành động sau:
– Lấy 3 quả bóng màu xanh trong 7 quả bóng xanh, ta có = 35 cách lấy.
– Lấy 3 quả bóng màu vàng trong 3 quả bóng vàng, ta có = 1 cách lấy.
– Lấy 3 quả bóng màu đỏ trong 14 quả bóng đỏ, ta có = 364 cách lấy.
Theo quy tắc cộng, ta có 35 + 1 + 364 = 400 cách để lấy được 3 quả bóng cùng màu.
Vậy có 400 cách để lấy được 3 quả bóng cùng màu.
Bài 2. Tính .
Hướng dẫn giải
Ta có nên = = 0.
Bài 3. Bác Dũng có 8 người bạn. Bác Dũng muốn mời 4 trong 8 người bạn đó đi câu cá vào cuối tuần. Nhưng trong 8 người bạn đó, có 2 người bạn không thích câu cá nên không đi. Vậy số cách chọn nhóm 4 người để đi câu cùng bác Dũng là bao nhiêu?
Hướng dẫn giải
Bác Dũng có 8 người bạn nhưng có hai người không đi nên số người có thể đi câu cùng bác Dũng là 8 – 2 = 6 người.
Khi đó, bác Dũng chọn 4 người trong 6 người để đi câu cùng thì số cách chọn là tổ hợp chập 4 của 6 người bạn.
Ta có = 15.
⇒ Bác Dũng có 15 cách để lựa chọn 4 người bạn trong 6 người bạn đi câu cá cùng.
Vậy bác Dũng có 15 cách để lựa chọn 4 người bạn đi câu cá cùng.
B.2 Bài tập trắc nghiệm
Câu 1. Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?
A. 210;
B. 30;
C. 15;
D. 35;
Hướng dẫn giải
Đáp án đúng là: C
Ta lấy 2 điểm trong 6 điểm trên đường thẳng ∆ kết hợp với 1 điểm không thuộc ∆ tạo ra một tam giác, có cách lấy ra 2 điểm thuộc ∆
Vậy số tam giác được lập theo yêu cầu bài toán là: 15 tam giác.
Câu 2. Có bao nhiêu giá trị nguyên dương của n thỏa mãn .
A. 0;
B. 1;
C. 2;
D. 3.
Hướng dẫn giải
Đáp án đúng là: C
Điều kiện n ≥ 2; n ∈ ℕ.
⇔ – n2 + 11n – 30 = 0
⇔ n = 5 hoặc n = 6.
Vậy có 2 giá trị của n thoả mãn.
Câu 3. Trong hộp có 5 quả cầu đỏ và 7 quả cầu xanh kích thước giống nhau. Lấy ngẫu nhiên 5 quả cầu từ hộp. Hỏi có bao nhiêu khả năng lấy được số quả cầu đỏ nhiều hơn số quả cầu xanh.
A. 245;
B. 3 480;
C. 246;
D. 3 360.
Hướng dẫn giải
Đáp án đúng là: C
Vì lấy quả cầu đỏ nhiều hơn quả cầu xanh nên ta có các trường hợp sau
Trường hợp 1. Lấy được 3 quả cầu đỏ, 2 quả cầu xanh: số cách lấy là = 210
Trường hợp 2. Lấy được 4 quả cầu đỏ, 1 quả cầu xanh: số cách lấy là = 35
Trường hợp 3. Lấy được 5 quả cầu đỏ, 0 quả cầu xanh: số cách lấy là = 1
Áp dụng quy tắc cộng ta có số cách lấy là: 210 + 35 + 1 = 246.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Cánh diều hay, chi tiết khác:
Lý thuyết Bài 2: Hoán vị. Chỉnh hợp
Lý thuyết Bài 3: Tổ hợp
Lý thuyết Bài 4: Nhị thức Newton
Lý thuyết Bài 1: Số gần đúng. Sai số
Lý thuyết Bài 2: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm