Giải SBT Toán lớp 10 Bài tập cuối chương 2
A. Trắc nghiệm
Giải SBT Toán 10 trang 24 Tập 1
Bài 2.10 trang 24 sách bài tập Toán lớp 10 Tập 1: Trong các bất phương trình sau, bất phương trình nào là bất phương trình bậc nhất hai ẩn?
A. 2x2 + 3y > 4.
B. xy + x < 5.
C. 32x + 43y ≥ 6.
D. x + y3 ≤ 3.
Lời giải:
Đáp án đúng là: C
Phương án A có x2 là hạng tử bậc 2.
Phương án B có xy là hạng tử bậc 2.
Phương án D có y3 là hạng tử bậc 3.
Phương án C có các hạng tử đều có bậc bằng 1.
Vậy ta chọn phương án C.
Bài 2.11 trang 24 sách bài tập Toán lớp 10 Tập 1: Trong các hệ bất phương trình sau, hệ bất phương trình nào là hệ bất phương trình bậc nhất hai ẩn?
Lời giải:
Đáp án đúng là: B
Phương án A có y2 là hạng tử bậc 2.
Phương án C có y2 là hạng tử bậc 2.
Phương án D có xy là hạng tử bậc 2.
Phương án B có các hạng tử đều có bậc bằng 1.
Vậy ta chọn phương án B.
Bài 2.12 trang 24 sách bài tập Toán lớp 10 Tập 1: Điểm nào dưới đây thuộc miền nghiệm của bất phương trình 2x + 5y ≤ 10?
A. (5; 2).
B. (-1; 4).
C. (2; 1).
D. (-5; 6).
Lời giải:
Đáp án đúng là: C
Thay x = 4; y = 2 vào biểu thức 2x + 5y ta được 2 . 4 + 5. 2 = 18 > 10 nên phương án A không thỏa mãn.
Thay x = -1; y = 4 vào biểu thức 2x + 5y ta được 2 . (-1) + 5 . 4 = 18 > 10 nên phương án B không thỏa mãn.
Thay x = -5; y = 6 vào biểu thức 2x + 5y ta được 2 . (-5) + 5 . 6 = 20 > 10 nên phương án D không thỏa mãn.
Thay x = 2; y = 1 vào biểu thức 2x + 5y ta được 2 . 2 + 5 . 1 = 9 < 10 nên phương án C đúng.
Vậy ta chọn phương án C.
Bài 2.13 trang 24 sách bài tập Toán lớp 10 Tập 1: Điểm nào dưới đây không thuộc miền nghiệm của bất phương trình 2x – 3y > 13?
A. (1; -5).
B. (2; -4).
C. (3; -3).
D. (8; 1).
Lời giải:
Đáp án đúng là: D
Thay x = 1; y = -5 vào biểu thức 2x – 3y ta được 2 . 1 – 3 . (-5) = 17 > 13 nên phương án A không thỏa mãn.
Thay x = 2; y = -4 vào biểu thức 2x – 3y ta được 2 . 2 – 3 . (-4) = 16 > 13 nên phương án B không thỏa mãn.
Thay x = 3; y = -3 vào biểu thức 2x – 3y ta được 2 . 3 – 3 . (-3) = 15 > 13 nên phương án C không thỏa mãn.
Thay x = 8; y = 1 vào thức 2x – 3y ta được 2 . 8 – 3 . 1 = 13 nên phương án D đúng.
Vậy ta chọn phương án D.
Bài 2.14 trang 24 sách bài tập Toán lớp 10 Tập 1: Cho bất phương trình x + 2y ≤ 3. Khẳng định nào sau đây là đúng?
A. Miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3 chứa gốc tọa độ.
B. Miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3 không chứa gốc tọa độ.
C. Miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = -3 chứa gốc tọa độ.
D. Miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = -3 không chứa gốc tọa độ.
Lời giải:
Đáp án đúng là: A
Bất phương trình x + 2y ≤ 3 nên miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3.
Do đó đáp án C và D không thỏa mãn.
Thay x = 0; y = 0 vào biểu thức x + 2y ta được 0 + 2 . 0 = 0 < 3.
Suy ra miền nghiệm của bất phương trình là nửa mặt phẳng bờ d: x + 2y = 3 chứa gốc tọa độ.
Vậy ta chọn phương án A.
Giải SBT Toán 10 trang 25 Tập 1
Bài 2.15 trang 25 sách bài tập Toán lớp 10 Tập 1: Cặp số nào dưới đây là nghiệm của hệ bất phương trình
A. (-1; 2).
B. (-2; -4).
C. (0; 1).
D. (2; -4).
Lời giải:
Đáp án đúng là: D
Các phương án A, B, C đều có giá trị x ≤ 0, do đó không thỏa mãn với điều kiện x > 0.
Thay x = 2; y = -4 vào hệ bất phương trình ta có:
x + y = 2 + (-4) = -2 < 2 (thỏa mãn), x – 2y = 2 – 2 . (-4) = 10 > 4 (thỏa mãn), x = 2 > 0 (thỏa mãn).
Vậy chọn phương án D.
Bài 2.16 trang 25 sách bài tập Toán lớp 10 Tập 1: Điểm nào dưới đây thuộc miền nghiệm của hệ bất phương trình
A. (-3; 2).
B. (0; 1).
C. (4; -1).
D. (-2; 2).
Lời giải:
Đáp án đúng là: C
Các phương án A, B, D có giá trị của y > 0 nên không thỏa mãn điều kiện y ≤ 0.
Thay x = 4; y = -1 vào hệ bất phương trình ta được:
-x + y = -4 + (-1) = -5 < 2 (thỏa mãn); x – 2y = 4 – 2 . (-1) = 6 > 1 (thỏa mãn), -1 < 0 (thỏa mãn).
Vậy chọn phương án D.
Bài 2.17 trang 25 sách bài tập Toán lớp 10 Tập 1: Miền nghiệm của hệ bất phương trình nào dưới đây là miền tam giác ABC (miền không bị gạch)?
Lời giải:
Đáp án đúng là: B
Gọi phương trình đường thẳng AB là d1: y = ax + b.
Do A và B thuộc d1 nên
Suy ra phương trình đường thẳng AB là y = -x + 1 hay x + y = 1.
Gọi phương trình đường thẳng BC là d2: y = cx + d.
Do B và C thuộc d2 nên
Suy ra phương trình đường thẳng BC là y = x – 1 hay x – y = 1.
Đường thẳng AC trùng với trục Oy nên phương trình đường thẳng AC là x = 0.
Ta thấy điểm (0,5; 0) là điểm thuộc miền nghiệm của hệ.
Thay x = 0,5; y = 0 vào biểu thức x + y được 0,5 < 1.
Suy ra bất phương trình thỏa mãn miền nghiệm trên là x + y ≤ 1 (1).
Thay x = 0,5; y = 0 vào biểu thức x – y được 0,5 < 1.
Suy ra bất phương trình thỏa mãn miền nghiệm trên là x – y ≤ 1 (2).
Thay x = 0,5; y = 0 vào biểu thức x được 0,5 > 0.
Suy ra bất phương trình thỏa mãn miền nghiệm trên là x ≥ 0 (3).
Từ (1), (2) và (3) ta có hệ bất phương trình
Vậy chọn phương án B.
Giải SBT Toán 10 trang 26 Tập 1
Bài 2.18 trang 26 sách bài tập Toán lớp 10 Tập 1: Miền nghiệm của hệ bất phương trình
A. Một nửa mặt phẳng.
B. Miền tam giác.
C. Miền tứ giác.
D. Miền ngũ giác.
Lời giải:
Đáp án đúng là: B
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: x = -1 là một đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng -1.
Chọn điểm I(1; 1) d1 và thay vào biểu thức x ta được 1 > -1.
Suy ra miền nghiệm của bất phương trình x ≥ -1 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).
• Vẽ đường thẳng d2: x + y = 0 bằng cách vẽ một đường thẳng đi qua hai điểm (0; 0) và (-1; 1).
Chọn điểm I(1; 1) d2 và thay vào biểu thức x + y ta được 1 + 1 = 2 > 0.
Suy ra miền nghiệm của bất phương trình x + y ≤ 0 là nửa mặt phẳng bờ d2 không chứa điểm I(1; 1).
• Đường thẳng d3: y = 0 trùng với trục Ox.
Chọn điểm I(1; 1) d3 và thay vào biểu thức y ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ bất phương trình trên là miền tam giác.
Vậy chọn phương án B.
Bài 2.19 trang 26 sách bài tập Toán lớp 10 Tập 1: Miền nghiệm của bất phương trình
A. Miền lục giác.
B. Miền tam giác.
C. Miền tứ giác.
D. Miền ngũ giác.
Lời giải:
Đáp án đúng là: D
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: x + y = 1 bằng cách vẽ đường thẳng đi qua hai điểm (0; 1) và (1; 0).
Chọn điểm O(0; 0) d1 và thay vào biểu thức x + y được 0 < 1.
Suy ra miền nghiệm của bất phương trình x + y ≤ 1 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
• Đường thẳng d2: y = -3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng -3.
Chọn điểm O(0; 0) d2 và thay vào biểu thức y được 0 > -3.
Suy ra miền nghiệm của bất phương trình y ≥ -3 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).
• Đường thẳng d3: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng 3.
Chọn điểm O(0; 0) và thay vào biểu thức y được 0 < 3.
Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).
• Đường thẳng d4: x = -3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng -3.
Chọn điểm O(0; 0) d4 và thay vào biểu thức x được 0 > -3.
Suy ra miền nghiệm của bất phương trình x ≥ -3 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).
• Đường thẳng d5: x = 3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng 3.
Chọn điểm O(0; 0) và thay vào biểu thức x được 0 < 3.
Suy ra miền nghiệm của bất phương trình x ≤ 3 là nửa mặt phẳng bờ d5 chứa điểm O(0; 0).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ là miền ngũ giác.
Vậy chọn phương án D.
Bài 2.20 trang 26 sách bài tập Toán lớp 10 Tập 1: Miền nghiệm của hệ bất phương trình
A. Miền lục giác.
B. Miền tam giác.
C. Miền tứ giác.
D. Miền ngũ giác.
Lời giải:
Đáp án đúng là: C
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: x + y = 10 bằng cách vẽ đường thẳng đi qua hai điểm (4; 6) và (5; 5).
Chọn điểm O(0; 0) d1 và thay vào biểu thức x + y được 0 < 10.
Suy ra miền nghiệm của bất phương trình x + y ≤ 10 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
• Đường thẳng d2: y = -3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng -3.
Chọn điểm O(0; 0) d2 và thay vào biểu thức y được 0 > -3.
Suy ra miền nghiệm của bất phương trình y ≥ -3 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).
• Đường thẳng d3: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có hoành độ bằng 3.
Chọn điểm O(0; 0) và thay vào biểu thức y được 0 < 3.
Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).
• Đường thẳng d4: x = -3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng -3.
Chọn điểm O(0; 0) d4 và thay vào biểu thức x được 0 > -3.
Suy ra miền nghiệm của bất phương trình x ≥ -3 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).
• Đường thẳng d5: x = 3 là đường thẳng song song với trục Oy và đi qua điểm có tung độ bằng 3.
Chọn điểm O(0; 0) và thay vào biểu thức x được 0 < 3.
Suy ra miền nghiệm của bất phương trình x ≤ 3 là nửa mặt phẳng bờ d5 chứa điểm O(0; 0).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ là miền tứ giác.
Vậy chọn đáp án C.
Bài 2.21 trang 26 sách bài tập Toán lớp 10 Tập 1: Giá trị lớn nhất của biểu thức F(x; y) = 3x + y với (x; y) thuộc miền nghiệm của hệ bất phương trình
A. -3.
B. 6.
C. 5.
D. 8.
Lời giải:
Đáp án đúng là: B
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = -1 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng -1.
Chọn điểm I(0; 1) d1 và thay vào biểu thức x được 0 > -1.
Suy ra miền nghiệm của bất phương trình x ≥ -1 là nửa mặt phẳng bờ d1 chứa điểm I(0; 1).
• Vẽ đường thẳng d2: x + y = 2 bằng cách vẽ một đường thẳng đi qua hai điểm (0; 2) và (2; 0).
Chọn điểm I(0; 1) d2 và thay vào biểu thức x + y được 1 < 2.
Suy ra miền nghiệm của bất phương trình x + y ≤ 2 là nửa mặt phẳng bờ d2 chứa điểm I(0; 1).
• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(0; 1) d3 và thay vào biểu thức y được 1 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 chứa điểm I(0; 1).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Miền nghiệm của hệ bất phương trình là miền tam giác với các đỉnh (-1; 3), (-1; 0) và (2; 0).
Ta có F(-1; 3) = 3 . (-1) + 3 = 0;
F(-1; 0) = 3 . (-1) + 0 = -3;
F(2; 0) = 3 . 2 + 0 = 6.
Do đó giá trị F(x; y) lớn nhất bằng 6 với x = 2; y = 0.
Vậy chọn phương án B.
Bài 2.22 trang 26 sách bài tập Toán lớp 10 Tập 1: Giá trị nhỏ nhất của biểu thức F(x; y) = -x + 4y với (x; y) thuộc miền nghiệm của hệ bất phương trình
A. -2.
B. 3.
C. 11.
D. -4.
Lời giải:
Đáp án đúng là: A
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 1 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 1.
Chọn điểm I(1,5; 1) d1 và thay vào biểu thức x ta được 1,5 > 1.
Suy ra miền nghiệm của bất phương trình x ≥ 1 là nửa mặt phẳng bờ d1 có chứa điểm I(1,5; 1).
• Đường thẳng d2: x = 2 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 2.
Chọn điểm I(1,5; 1) d2 và thay vào biểu thức x ta được 1,5 < 2.
Suy ra miền nghiệm của bất phương trình x ≤ 2 là nửa mặt phẳng bờ d2 có chứa điểm I(1,5; 1).
• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(1,5; 1) d3 và thay vào biểu thức y ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d3 có chứa điểm I(1,5; 1).
• Đường thẳng d4: y = 3 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 3.
Chọn điểm I(1,5; 1) d3 và thay vào biểu thức y ta được 1 < 3.
Suy ra miền nghiệm của bất phương trình y ≤ 3 là nửa mặt phẳng bờ d4 có chứa điểm I(1,5; 1).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (1; 0), (1; 3), (2; 3) và (2; 0).
Ta có:
F(1; 0) = -1 + 4 . 0 = -1;
F(1; 3) = -1 + 4 . 3 = 11;
F(2; 3) = -2 + 4 . 3 = 10;
F(2; 0) = -2 + 4 . 0 = -2.
Do đó giá trị F(x; y) nhỏ nhất bằng -2 khi x = 2; y = 0.
Vậy chọn phương án A.
Bài 2.23 trang 26 sách bài tập Toán lớp 10 Tập 1: Tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = x + 5y với (x; y) thuộc miền nghiệm của hệ bất phương trình
A. -20.
B. -4.
C. 28.
D. 16.
Lời giải:
Đáp án đúng là: B
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: y = -2 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng -2.
Chọn điểm O(0; 0) Ï d1 và thay vào biểu thức y được 0 > -2.
Suy ra miền nghiệm của bất phương trình -2 ≤ y là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
• Đường thẳng d2: y = 2 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 2.
Chọn điểm O(0; 0) ∉ d2 và thay vào biểu thức y được 0 < 2.
Suy ra miền nghiệm của bất phương trình y ≤ 2 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).
• Vẽ đường thẳng d3: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4; 0).
Chọn điểm O(0; 0) ∉ d3 và thay vào biểu thức x + y được 0 < 4.
Suy ra miền nghiệm của bất phương trình x + y ≤ 4 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).
• Vẽ đường thẳng d4: y – x = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (1; 5).
Chọn điểm O(0; 0)∉ d4 và thay vào biểu thức y – x được 0 < 4.
Suy ra miền nghiệm của bất phương trình y – x ≤ 4 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (-6; -2), (-2; 2), (2;2) và (6; -2).
Ta có:
F(-6; -2) = -6 + 5 . (-2) = -16;
F(-2; 2) = -2 + 5 . 2 = 8;
F(2; 2) = 2 + 5 . 2 = 12;
F(6; -2) = 6 + 5 . (-2) = -4.
Do đó giá trị lớn nhất của F(x; y) = 12 và giá trị nhỏ nhất của F(x; y) = -16.
Suy ra tổng của giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) với (x; y) thuộc miền nghiệm của hệ bất phương trình trên là 12 + (-16) = -4.
Vậy chọn phương án B.
B. Tự luận
Giải SBT Toán 10 trang 27 Tập 1
Bài 2.24 trang 27 sách bài tập Toán lớp 10 Tập 1: Một hợp tác xã chăn nuôi dự định trộn hai loại thức ăn gia súc X và Y để tạo thành thức ăn hỗn hợp cho gia súc. Giá một bao loại X là 250 nghìn đồng, giá một bao loại Y là 200 nghìn đồng. Mỗi bao loại X chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C. Mỗi bao loại Y chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C. Tìm chi phí nhỏ nhất để mua hai loại thức ăn gia súc X và Y sao cho hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C.
A. 1,95 triệu đồng.
B. 4,5 triệu đồng.
C. 1,85 triệu đồng.
D. 1,7 triệu đồng.
Lời giải:
Đáp án đúng là: A
Gọi số bao loại X và số bao loại Y lần lượt là x bao và y bao (x, y ℕ).
Mỗi bao loại X chứa 2 đơn vị chất dinh dưỡng A, 2 đơn vị chất dinh dưỡng B và 2 đơn vị chất dinh dưỡng C nên x bao loại X chứa 2x đơn vị chất dinh dưỡng A, 2x đơn vị chất dinh dưỡng B và 2x đơn vị chất dinh dưỡng C.
Mỗi bao loại Y chứa 1 đơn vị chất dinh dưỡng A, 9 đơn vị chất dinh dưỡng B và 3 đơn vị chất dinh dưỡng C nên y bao loại Y chứa y đơn vị chất dinh dưỡng A, 9y đơn vị chất dinh dưỡng B và 3y đơn vị chất dinh dưỡng C.
Hỗn hợp thu được chứa tối thiểu 12 đơn vị chất dinh dưỡng A, 36 đơn vị chất dinh dưỡng B và 24 đơn vị chất dinh dưỡng C nên 2x + y ≥ 12; 2x + 9y ≥ 36; 2x + 3y ≥ 24.
Khi đó ta có hệ bất phương trình sau
F(x; y) = 250x + 200y (triệu đồng).
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.
Chọn điểm I(5; 5)d1 và thay vào biểu thức x ta được 5 > 0.
Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(5; 5).
• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(5; 5) d2 và thay vào biểu thức y ta được 5 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(5; 5).
• Vẽ đường thẳng d3: 2x + y = 12 bằng cách vẽ đường thẳng đi qua hai điểm (6; 0) và (5; 2).
Chọn điểm I(5; 5)d3 và thay vào biểu thức 2x + y ta được 2 . 5 + 5 = 15 > 12.
Suy ra miền nghiệm của bất phương trình 2x + y ≥ 12 là nửa mặt phẳng bờ d3 chứa điểm I(5; 5).
• Vẽ đường thẳng d4: 2x + 9y = 36 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4,5; 3).
Chọn điểm I(5; 5) d4 và thay vào biểu thức 2x + 9y ta được 2 . 5 + 9 . 5 = 55 > 36.
Suy ra miền nghiệm của bất phương trình 2x + 9y ≥ 36 là nửa mặt phẳng bờ d4 chứa điểm I(5; 5).
• Vẽ đường thẳng d5: 2x + 3y = 24 bằng cách vẽ đường thẳng đi qua hai điểm (3; 6) và (6; 4).
Chọn điểm I(5; 5) d5 và thay vào biểu thức 2x + 3y ta được 2 . 5 + 3 . 5 = 25 > 24.
Suy ra miền nghiệm của bất phương trình 2x + 3y ≥ 24 là nửa mặt phẳng bờ d5 chứa điểm I(5; 5).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Miền nghiệm của hệ được giới hạn bởi các điểm (0; 12); (3; 6); (9; 2); (18; 0).
Ta có:
F(0; 12) = 250 . 0 + 200 . 12 = 2 400;
F(3; 6) = 250 . 3 + 200 . 6 = 1 950;
F(9; 2) = 250 . 9 + 200 . 2 = 2 650;
F(18; 0) = 250 . 18 + 200 . 0 = 4 500.
Khi đó ta thấy F(x; y) đạt giá trị nhỏ nhất bằng 1 950 tại x = 3; y = 6.
Vậy chi phí nhỏ nhất để mua hai loại thức ăn là 1,95 triệu đồng.
Bài 2.25 trang 27 sách bài tập Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của các bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:
a) x + y ≥ -4;
b) 2x – y ≤ 5;
c) x + 2y < 0;
d) -x + 2y > 0.
Lời giải:
a) Biểu diễn tập nghiệm của bất phương trình x + y ≥ -4 trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: x + y = -4 bằng cách vẽ đường thẳng đi qua hai điểm (0; -4) và (-4; 0).
• Chọn điểm O(0; 0) ∉ d1 và thay vào biểu thức x + y ta được 0 > -4.
Suy ra miền nghiệm của bất phương trình x + y ≥ -4 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
b) Biểu diễn tập nghiệm của bất phương trình 2x – y ≤ 5 trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: 2x – y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; -5) và (3; 1).
• Chọn điểm O(0; 0) ∉ d1 và thay vào biểu thức 2x – y ta được 0 < 5.
Suy ra miền nghiệm của bất phương trình 2x – y ≤ 5 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
c) Biểu diễn tập nghiệm của bất phương trình x + 2y < 0 trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: x + 2y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (2; -1).
Chọn điểm I(1; 1)∉ d1 và thay vào biểu thức x + 2y ta được 1 + 2 . 1 = 3 > 0.
• Suy ra miền nghiệm của bất phương trình x + 2y < 0 là nửa mặt phẳng bờ d1 không chứa điểm I(1; 1) và bỏ đi đường thẳng d1.
d) Biểu diễn tập nghiệm của bất phương trình -x + 2y > 0 trên mặt phẳng tọa độ:
• Vẽ đường thẳng d1: -x + 2y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (2; 1).
• Chọn điểm I(1; 1)∉d1 và thay vào biểu thức -x + 2y ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình -x + 2y > 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1) và bỏ đi đường thẳng d1.
Bài 2.26 trang 27 sách bài tập Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của các hệ bất phương trình bậc nhất hai ẩn sau trên mặt phẳng tọa độ:
ý b
ý c
Lời giải:
a) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.
Chọn điểm I(1; 1)∉ d1 và thay vào biểu thức x ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).
• Đường thẳng d2: x = 10 là đường thẳng song song với trục Oy và đi qua điểm có hoành độ bằng 10.
Chọn điểm I(1; 1) ∉ d2 và thay vào biểu thức x ta được 1 < 10.
Suy ra miền nghiệm của bất phương trình x ≤ 10 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).
• Đường thẳng d3: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(1; 1) ∉ d3 và thay vào biểu thức y ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình y > 0 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1) và bỏ đi đường thẳng d3.
• Vẽ đường thẳng d4: x – y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (4; 0) và (0; -4).
Chọn điểm I(1; 1) ∉ d4 và thay vào biểu thức x – y ta được 0 < 4.
Suy ra miền nghiệm của bất phương trình x – y > 4 là nửa mặt phẳng bờ d4 không chứa điểm I(1; 1) và bỏ đi đường thẳng d4.
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
b) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(0; 0,5) Ï d1 và thay vào biểu thức y ta được 0,5 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(0; 0,5).
• Đường thẳng d2: y = 1 là đường thẳng song song với trục Ox và đi qua điểm có tung độ bằng 1.
Chọn điểm I(0; 0,5) ∉ d2 và thay vào biểu thức y ta được 0,5 < 1.
Suy ra miền nghiệm của bất phương trình y ≤ 1 là nửa mặt phẳng bờ d2 chứa điểm I(0; 0,5).
• Vẽ đường thẳng d3: x + y = 2 bằng cách vẽ đường thẳng đi qua hai điểm (2; 0) và (0; 2).
Chọn điểm I(0; 0,5) ∉ d3 và thay vào biểu thức x + y ta được 0,5 < 2.
Suy ra miền nghiệm của bất phương trình x + y ≤ 2 là nửa mặt phẳng bờ d3 chứa điểm I(0; 0,5).
• Vẽ đường thẳng d4: y – x = 2 bằng cách vẽ đường thẳng đi qua hai điểm (0; 2) và (-2; 0).
Chọn điểm I(0; 0,5) ∉ d4 và thay vào biểu thức y – x ta được 0,5 < 2.
Suy ra miền nghiệm của bất phương trình y – x ≤ 2 là nửa mặt phẳng bờ d4 chứa điểm I(0; 0,5).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
c) Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.
Chọn điểm I(1; 1) ∉ d1 và thay vào biểu thức x ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).
• Vẽ đường thẳng d2: 4x – 6y = 0 bằng cách vẽ đường thẳng đi qua hai điểm (0; 0) và (3; 2).
Chọn điểm I(1; 1)∉d2 và thay vào biểu thức 4x – 6y ta được -2 < 0.
Suy ra miền nghiệm của bất phương trình 4x – 6y < 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1) và bỏ đi đường thẳng d2.
• Vẽ đường thẳng d3: 2x – 3y = 1 bằng cách vẽ đường thẳng đi qua hai điểm (2; 1) và (5; 3).
Chọn điểm I(1; 1) ∉ d3 và thay vào biểu thức 2x – 3y ta được -1 < 1.
Suy ra miền nghiệm của bất phương trình 2x – 3y ≥ 1 là nửa mặt phẳng bờ d3 không chứa điểm I(1; 1).
Khi đó hệ vô nghiệm vì mặt phẳng tọa độ đều bị gạch.
Bài 2.27 trang 27 sách bài tập Toán lớp 10 Tập 1: Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức F(x; y) = 2x + 3y với (x; y) thuộc miền nghiệm của hệ bất phương trình
Lời giải:
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: y = -1 là đường thẳng song song với trục Ox đi qua điểm có tung độ bằng -1.
Chọn điểm O(0; 0) ∉ d1 và thay vào biểu thức y ta được 0 > -1.
Suy ra miền nghiệm của bất phương trình y ≥ -1 là nửa mặt phẳng bờ d1 chứa điểm O(0; 0).
• Đường thẳng d2: y = 1 là đường thẳng song song với trục Ox đi qua điểm có tung độ bằng 1.
Chọn điểm O(0; 0) ∉ d2 và thay vào biểu thức y ta được 0 < 1.
Suy ra miền nghiệm của bất phương trình y ≤ 1 là nửa mặt phẳng bờ d2 chứa điểm O(0; 0).
• Vẽ đường thẳng d3: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (4; 0).
Chọn điểm O(0; 0) ∉ d3 và thay vào biểu thức x + y ta được 0 < 4.
Suy ra miền nghiệm của bất phương trình x + y ≤ 4 là nửa mặt phẳng bờ d3 chứa điểm O(0; 0).
• Vẽ đường thẳng d4: y – x = 4 bằng cách vẽ đường thẳng đi qua hai điểm (0; 4) và (-4; 0).
Chọn điểm O(0; 0) ∉d4 và thay vào biểu thức y – x ta được 0 < 4.
Suy ra miền nghiệm của bất phương trình y – x ≤ 4 là nửa mặt phẳng bờ d4 chứa điểm O(0; 0).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (-5; -1), (-3; 1), (3; 1), (5; -1).
Ta có:
F(-5; -1) = 2 . (-5) + 3 . (-1) = -13;
F(-3; 1) = 2 . (-3) + 3 . 1 = -3;
F(3; 1) = 2 . 3 + 3 . 1 = 9;
F(5; -1) = 2 . 5 + 3 . (-1) = 7.
Khi đó giá trị nhỏ nhất của F(x; y) là F(-5; -1) = -13 và giá trị lớn nhất là F(3; 1) = 9.
Bài 2.28 trang 27 sách bài tập Toán lớp 10 Tập 1: Một phân xưởng có hai máy chuyên dụng M1 và M2 để sản xuất hai loại sản phẩm A và B theo đơn đặt hàng. Nếu sản xuất được một tấn sản phẩm loại A thì phân xưởng nhận được số tiền lãi là 2 triệu đồng. Nếu sản xuất được một tấn sản phẩm loại B thì phân xưởng nhận được số tiền lãi là 1,6 triệu đồng. Muốn sản xuất một tấn sản phẩm loại A, người ta phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất một tấn sản phẩm loại B, người ta phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Một máy không thể dùng để sản xuất đồng thời hai loại sản phẩm này. Máy M1 làm việc không quá 6 giờ một ngày và máy M2 làm việc không quá 4 giờ một ngày. Hỏi số tiền lãi lớn nhất mà phân xưởng này có thể thu được trong một ngày là bao nhiêu?
Lời giải:
Gọi số sản phẩm loại A và loại B sản xuất ra lần lượt là x tấn và y tấn (x, y ≥ 0).
Để sản xuất x tấn sản phẩm loại A thì máy M1 cần hoạt động trong 3x giờ, máy M2 cần hoạt động trong x giờ.
Để sản xuất y tấn sản phẩm loại B thì máy M1 cần hoạt động y giờ, máy M2 cần hoạt động trong y giờ.
Do máy M1 làm việc không quá 6 giờ một ngày và máy M2 làm việc không quá 4 giờ một ngày nên 3x + y ≤ 6; x + y ≤ 4.
Khi đó ta có hệ phương trình
F(x; y) = 2x + 1,6y (triệu đồng).
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.
Chọn điểm I(1; 1)∉ d1 và thay vào biểu thức x ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(1; 1).
• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(1; 1) ∉ d2 và thay vào biểu thức y ta được 1 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(1; 1).
• Vẽ đường thẳng d3: 3x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (2; 0) và (1; 3).
Chọn điểm I(1; 1) ∉ d3 và thay vào biểu thức 3x + y ta được 4 < 6.
Suy ra miền nghiệm của bất phương trình 3x + y ≤ 6 là nửa mặt phẳng bờ d3 chứa điểm I(1; 1).
• Vẽ đường thẳng d4: x + y = 4 bằng cách vẽ đường thẳng đi qua hai điểm (4; 0) và (0; 4).
Chọn điểm I(1; 1) ∉ d4 và thay vào biểu thức x + y ta được 2 < 4.
Suy ra miền nghiệm của bất phương trình x + y ≤ 4 là nửa mặt phẳng bờ d4 chứa điểm I(1; 1).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (0; 0), (0; 4), (1; 3), (2; 0).
Ta có:
F(0; 0) = 2 . 0 + 1,6 . 0 = 0;
F(0; 4) = 2 . 0 + 1,6 . 4 = 6,4;
F(1; 3) = 2 . 1 + 1,6 . 3 = 6,8;
F(2; 0) = 2 . 2 + 1,6 . 0 = 4.
Khi đó giá trị của F(x; y) lớn nhất bằng 6,8.
Vậy số tiền lãi lớn nhất một ngày mà phân xưởng có thể đạt được là 6,8 triệu đồng.
Giải SBT Toán 10 trang 28 Tập 1
Bài 2.29 trang 28 sách bài tập Toán lớp 10 Tập 1: Giả sử một người ăn kiêng cần được cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C mỗi ngày từ hai loại đồ uống I và II. Mỗi cốc đồ uống I cung cấp 60 calo, 12 đơn vị vitamin A và 10 đơn vị vitamin C.
Mỗi cốc đồ uống II cung cấp 60 calo, 6 đơn vị vitamin A và 30 đơn vị vitamin C. Biết rằng một cốc đồ uống I có giá 12 nghìn đồng và một cốc đồ uống II có giá 15 nghìn đồng.
a) Gọi x và y tương ứng là số cốc đồ uống I và II. Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình và xác định miền nghiệm của hệ đó.
b) Gọi F (nghìn đồng) là số tiền phải trả cho x cốc đồ uống I và y cốc đồ uống II. Hãy biểu diễn F theo x và y.
c) Biết rằng F đạt giá trị nhỏ nhất trên miền nghiệm tìm được ở câu a tại một trong các đỉnh của miền nghiệm, tìm giá trị nhỏ nhất đó. Từ đó suy ra người đó cần uống bao nhiêu cốc loại I và loại II để chi phí là nhỏ nhất mà vẫn đáp ứng được yêu cầu hằng ngày.
Lời giải:
a) Do có x cốc đồ uống I và y cốc đồ uống II nên x ≥ 0; y ≥ 0.
x cốc đồ uống I cung cấp 60x calo, 12x đơn vị vitamin A và 10x đơn vị vitamin C.
y cốc đồ uống II cung cấp 60y calo, 6y đơn vị vitamin A và 30y đơn vị vitamin C.
Do người đó cần cung cấp ít nhất 300 calo, 36 đơn vị vitamin A và 90 đơn vị vitamin C nên 60x + 60y ≥ 300; 12x + 6y ≥ 36; 10x + 30y ≥ 90.
Khi đó ta có hệ bất phương trình sau:
Biểu diễn tập nghiệm của các bất phương trình trên mặt phẳng tọa độ:
• Đường thẳng d1: x = 0 là đường thẳng trùng với trục Oy.
Chọn điểm I(3; 3)∉ d1 và thay vào biểu thức x ta được 3 > 0.
Suy ra miền nghiệm của bất phương trình x ≥ 0 là nửa mặt phẳng bờ d1 chứa điểm I(3; 3).
• Đường thẳng d2: y = 0 là đường thẳng trùng với trục Ox.
Chọn điểm I(3; 3) ∉ d2 và thay vào biểu thức y ta được 3 > 0.
Suy ra miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bờ d2 chứa điểm I(3; 3).
• Vẽ đường thẳng d3: x + y = 5 bằng cách vẽ đường thẳng đi qua hai điểm (0; 5) và (5; 0).
Chọn điểm I(3; 3) ∉ d3 và thay vào biểu thức x + y ta được 6 > 5.
Suy ra miền nghiệm của bất phương trình x + y ≥ 5 là nửa mặt phẳng bờ d3 chứa điểm I(3; 3).
• Vẽ đường thẳng d4: 2x + y = 6 bằng cách vẽ đường thẳng đi qua hai điểm (0; 6) và (1; 4).
Chọn điểm I(3; 3) ∉d4 và thay vào biểu thức x + y ta được 2 . 3 + 3 = 9 > 6.
Suy ra miền nghiệm của bất phương trình 2x + y ≥ 5 là nửa mặt phẳng bờ d4 chứa điểm I(3; 3).
• Vẽ đường thẳng d5: x + 3y = 9 bằng cách vẽ đường thẳng đi qua hai điểm (0; 3) và (3; 2).
Chọn điểm I(3; 3) ∉ d5 và thay vào biểu thức x + 3y ta được 2 + 3 . 3 = 11 > 5.
Suy ra miền nghiệm của bất phương trình x + 3y ≥ 9 là nửa mặt phẳng bờ d5 chứa điểm I(3; 3).
Khi đó miền nghiệm của hệ là miền không bị gạch như hình vẽ dưới đây:
Ta thấy miền nghiệm của hệ bất phương trình trên là miền tứ giác với các đỉnh (0; 6), (1; 4), (3; 2), (9; 0).
b) Chi phí cho hai loại đồ uống là F(x; y) = 12x + 15y (nghìn đồng).
c) Ta có:
F(0; 6) = 12 . 0 + 15 . 6 = 90;
F(1; 4) = 12 . 1 + 15 . 4 = 72;
F(3; 2) = 12 . 3 + 15 . 2 = 66;
F(9; 0) = 12 . 9 + 15 . 0 = 108.
Giá trị nhỏ nhất của F(x; y) bằng 66 khi x = 3 và y = 2.
Vậy người đó cần uống 3 cốc đồ uống I và 2 cốc đồ uống II để đạt được các mục tiêu đã đề ra.
Xem thêm các bài giải SBT Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 4: Hệ bất phương trình bậc nhất hai ẩn
Bài 5: Giá trị lượng giác của một góc từ 0° đến 180°
Bài 6: Hệ thức lượng trong tam giác
Bài tập cuối chương 3