Giải bài tập Toán 6 Bài 12: Ước chung và ước chung lớn nhất
Video giải Toán 6 Bài 12: Ước chung và ước chung lớn nhất – Cánh diều
Trả lời câu hỏi giữa bài
Giải Toán 6 trang 47 Tập 1 Cánh diều
Câu hỏi khởi động trang 47 Toán lớp 6 Tập 1: Thầy giáo chuẩn bị 30 miếng dứa và 48 miếng dưa hấu để liên hoan lớp. Thầy giáo muốn chia số trái cây trên vào một số đĩa sao cho mỗi đĩa có số miếng mỗi loại quả như nhau.
Thầy giáo có thể chia như thế vào bao nhiêu đĩa? Số đĩa nhiều nhất mà thầy giáo có thể dùng là bao nhiêu?
Lời giải:
Cách 1. Trước khi học bài này, ta giải quyết bài toán như sau:
+) Ta tìm các ước của 30 và 48:
Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.
Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
+) Các ước chung của của 30 và 48 là 1, 2, 3, 6
Vậy thầy giáo có thể chia số hoa quả thành 1 đĩa, 2 đĩa, 3 đĩa hoặc 6 đĩa. Số đĩa nhiều nhất mà thầy giáo có thể chia là 6 đĩa.
Cách 2. Sau khi học bài này, ta giải quyết được câu hỏi khởi động như sau:
Ta đi tìm ước chung của 30 và 48 bằng cách tìm ƯCLN(30, 48)
+) Phân tích 30 và 48 ra thừa số nguyên tố:
Khi đó: 30 = 2 . 3 . 5
Khi đó: 48 = 2 . 2 . 2 . 2 . 3 = 24 . 3
+) Các thừa số nguyên tố chung của 30 và 48 là: 2 và 3 với số mũ bé nhất lần lượt là 1 và 1
Khi đó: ƯCLN(30, 48) = 21 . 31 = 6
Mà các ước của 6 là: 1, 2, 3, 6
Do đó các ước chung của 30 và 48 là 1, 2, 3, 6.
Vậy thầy giáo có thể chia vào 1 đĩa, 2 đĩa, 3 đĩa hoặc 6 đĩa. Số đĩa trái cây nhiều nhất mà thầy giáo có thể chia là 6 đĩa.
Hoạt động 1 trang 47 Toán lớp 6 Tập 1: a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần:
b) Tìm các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai.
c) Xác định số lớn nhất trong các ước chung của 30 và 48.
Lời giải:
a) Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.
Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
Ta điền vào bảng như sau:
b) Các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai là 1, 2, 3, 6 được gọi là ước chung của 30 và 48.
c) Số lớn nhất trong các ước chung của 30 và 48 là 6. Số đó được gọi là ước chung lớn nhất của 30 và 48.
Giải Toán 6 trang 48 Tập 1 Cánh diều
Luyện tập 1 trang 48 Toán lớp 6 Tập 1: a) Số 8 có phải là ước chung của 24 và 56 không? Vì sao?
b) Số 8 có phải là ước chung của 14 và 48 không? Vì sao?
Lời giải:
a) Ta có: 24 và 56 đều chia hết cho 8 (vì 24 : 8 = 3; 56 : 8 = 7) nên 8 vừa là ước của 24 vừa là ước của 56. Do đó 8 là ước chung của 24 và 56.
b) Ta có: 14 : 8 = 1 (dư 6); 48 : 8 = 6 nên 8 là ước của 48 nhưng không là ước của 14. Do đó 8 không phải là ước chung của 14 và 48.
Luyện tập 2 trang 48 Toán lớp 6 Tập 1: Số 7 có phải là ước chung của 14, 49, 63 không? Vì sao?
Lời giải:
Ta có: 14 : 7 = 2; 49 : 7 = 7; 63 : 7 = 9
Nên 7 là ước của cả ba số 14; 49 và 63.
Vậy 7 là ước chung của ba số 14; 49 và 63.
Hoạt động 2 trang 48 Toán lớp 6 Tập 1: Quan sát bảng sau:
a) Viết tập hợp ƯC(24, 36).
b) Tìm ƯCLN (24, 36).
c) Thực hiện phép chia ƯCLN (24, 36) cho các ước chung của hai số đó.
Lời giải:
a) Quan sát bảng trên ta thấy các số 1; 2; 3; 4; 6; 12 vừa là ước của 24 vừa là ước là ước của 36 nên các số đó là ước chung của 24 và 36.
Do đó ta viết: ƯC(24, 36) = {1; 2; 3; 4; 6; 12}.
b) Trong các ước chung của 24 và 36, ta thấy 12 là số lớn nhất.
Vậy ƯCLN(24, 36) = 12.
c) Thực hiện phép chia ƯCLN(24, 36) cho các ước chung của hai số đó ta được:
12 : 1 = 12
12 : 2 = 6
12 : 3 = 4
12 : 4 = 3
12 : 6 = 2
12 : 12 = 1.
Giải Toán 6 trang 49 Tập 1 Cánh diều
Luyện tập 3 trang 49 Toán lớp 6 Tập 1: Tìm tất cả các số có hai chữ số là ước chung của a và b, biết rằng ƯCLN(a, b) = 80.
Lời giải:
Vì ước chung của a và b đều là ước của ƯCLN(a, b) = 80 nên ta đi tìm các ước của 80 bằng cách lấy 80 lần lượt chia cho các số tự nhiên từ 1 đến 80, ta được các ước của 80 là: 1; 2; 4; 5; 8; 10; 16; 20; 40; 80.
Vậy tất cả các số có hai chữ số là ước chung của a và b là: 10; 16; 20; 40; 80.
Hoạt động 3 trang 49 Toán lớp 6 Tập 1:
Lời giải:
Ta có thể tìm ƯCLN (36, 48) theo các bước sau:
Bước 1. Phân tích 36 và 48 ra thừa số nguyên tố
36 = 2 . 2 . 3 . 3 = 22 . 32
48 = 2 . 2 . 2 .2 . 3 = 24 . 3
Bước 2. Chọn ra các thừa số nguyên tố chung của 36 và 48 là 2 và 3.
Bước 3. Với mỗi thừa số nguyên tố chung 2 và 3, ta chọn lũy thừa với số mũ nhỏ nhất
+) Số mũ nhỏ nhất của 2 là 2, ta chọn 22.
+) Số mũ nhỏ nhất của 3 là 1, ta chọn 31.
Bước 4. Lấy tích của các lũy thừa đã chọn, ta nhận được ước chung lớn nhất cần tìm ƯCLN (36, 48) = 22 . 31 = 12.
Giải Toán 6 trang 50 Tập 1 Cánh diều
Luyện tập 4 trang 50 Toán lớp 6 Tập 1: Tìm ƯCLN của 126 và 162.
Lời giải:
+ Ta phân tích các số 126 và 162 ra thừa số nguyên tố bằng cách viết “theo cột dọc” (các em cũng có thể viết bằng “rẽ nhánh”) ta có:
Do đó: 126 = 2. 3 . 3. 7= 2 . 32 . 7
162 = 2 . 3. 3. 3. 3 = 2 . 34
+ Các thừa số nguyên tố chung của 126 và 162 là 2 và 3.
+ Số mũ nhỏ nhất của 2 là 1; số mũ nhỏ nhất của 3 là 2.
Vậy ƯCLN(126, 162) = 21 . 32 = 2 . 9 = 18.
Hoạt động 4 trang 50 Toán lớp 6 Tập 1: Tìm ƯCLN(8, 27).
Lời giải:
Ta có: 8 = 2 . 4 = 2 . 2. 2 = 23
27 = 3 . 9 = 3 . 3. 3 = 33
Ta thấy hai số 8 và 27 không có thừa số nguyên tố chung do đó ƯCLN của chúng bằng 1.
Vậy ƯCLN(8, 27) = 1.
Luyện tập 5 trang 50 Toán lớp 6 Tập 1: Hai số 24 và 35 có nguyên tố cùng nhau không? Vì sao?
Lời giải:
Để biết hai số có phải là hai số nguyên tố cùng nhau hay không, ta đi tìm ƯCLN của hai số đó, nếu ƯCLN của hai số là 1 thì hai số đó là hai số nguyên tố cùng nhau.
Ta có:
Do đó: 24 = 23 . 3 và 35 = 5 . 7
Ta thấy hai số 24 và 35 không có thừa số nguyên tố chung nên ƯCLN(24, 35) = 1.
Vậy 24 và 35 là hai số nguyên tố cùng nhau.
Hoạt động 5 trang 50 Toán lớp 6 Tập 1: a) Tìm ƯCLN(4, 9).
b) Có thể rút gọn phân số được nữa hay không?
Lời giải:
a) Ta có: 4 = 2 . 2 = 22 và 9 = 3 . 3 = 32
Do đó hai số 4 và 9 không có thừa số nguyên tố chung nên ƯCLN(4, 9) = 1.
b) Vì ƯCLN(4, 9) = 1 nên ta KHÔNG thể rút gọn phân số được nữa (vì cả tử và mẫu đều không cùng chia hết được cho số tự nhiên nào khác 1).
Bài tập
Giải Toán 6 trang 51 Tập 1 Cánh diều
Bài 1 trang 51 Toán lớp 6 Tập 1: Số 1 có phải là ước chung của hai số tự nhiên bất kì không? Vì sao?
Lời giải:
Số 1 là ước chung của hai số tự nhiên bất kì vì tất cả các số tự nhiên đều có ước là 1.
Bài 2 trang 51 Toán lớp 6 Tập 1: Quan sát hai thanh sau:
a) Viết tập hợp ƯC(440, 495).
b) Tìm ƯCLN(440, 495).
Lời giải:
a) Quan sát hình vẽ ta thấy
+ Các ước của 440 là: 1; 2; 4; 5; 8; 10; 11; 20; 22; 40; 44; 55; 88; 110; 220; 440
+ Các ước của 495 là: 1; 3; 5; 9; 11; 15; 33; 45; 55; 99; 165; 495
+ Các ước chung của 440 và 495 là: 1; 5; 11; 55.
Vậy ƯC(440, 495) = {1; 5; 11; 55}.
b) Trong các ước chung của 440 và 495, ta thấy 55 là số lớn nhất.
Vậy ƯCLN(440, 495) = 55.
Bài 3 trang 51 Toán lớp 6 Tập 1: Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây:
a) 31, 22, 34;
b) 105, 128, 135;
Lời giải:
a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31.
22 và 34 không chia hết cho 31
Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.
+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17.
Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.
Vậy ƯCLN( 22, 34) = 2.
b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có:
Do đó: 105 = 3 . 5 . 7
128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27
135 = 3 . 3 . 3 . 5 = 33 . 5
+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1.
+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1.
+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5.
Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1.
Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15
Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15.
Bài 4 trang 51 Toán lớp 6 Tập 1: Tìm ƯCLN(126, 150). Từ đó hãy tìm tất cả các ước chung của 126 và 150.
Lời giải:
Do đó: 126 = 2 . 3 . 3 . 7 = 2 . 32 . 7
150 = 2 . 3 . 5 . 5 = 2 . 3 . 52
Các thừa số nguyên tố chung của 126 và 150 là 2 và 3
Số 2 có số mũ nhỏ nhất là 1; số 3 có số mũ nhỏ nhất là 1.
Do đó: ƯCLN(126, 150) = 21 . 31 = 2 . 3 = 6
Lại có 6 có các ước là 1; 2; 3; 6
Ước chung của 126 và 150 là ước của ƯCLN(126, 150) là 1; 2; 3; 6
Hay ƯC(126, 150) = {1; 2; 3; 6}
Vậy ƯCLN(126, 150) = 6; ƯC(126, 150) = {1; 2; 3; 6}.
Bài 5 trang 51 Toán lớp 6 Tập 1: Rút gọn các phân số sau về phân số tối giản: .
Lời giải:
Các phân số được gọi là tối giản khi phân số đó có tử và mẫu là hai số nguyên tố cùng nhau. Vậy để rút gọn các phân số (chưa phải là phân số tối giản) thì ta đi tìm ƯCLN của tử số và mẫu số, rồi lấy cả tử và mẫu chia cho ƯCLN của cả hai thì ta được phân số tối giản.
+ Rút gọn phân số
Ta có:
Do đó: 60 = 22 . 3 . 5 và 72 = 23 . 32
Các thừa số nguyên tố chung là 2 và 3, số mũ nhỏ nhất của 2 là 2, số mũ nhỏ nhất của 3 là 1
Suy ra ƯCLN(60, 72) = 22 . 31 = 4 . 3 = 12
Vậy
+ Rút gọn phân số
Ta có: 70 = 7 . 10 = 7 . (2 . 5) = 2 . 5 . 7
95 = 5 . 19
Thừa số nguyên tố chung là 5, có số mũ nhỏ nhất là 1
Khi đó: ƯCLN(70, 95) = 51 = 5
Vậy
+ Rút gọn phân số
Do đó: 150 = 2 . 3 . 52
360 = 2 . 5 . 2 . 2 . 3 . 3 = 23 . 32 . 5
Các thừa số nguyên tố chung là 2, 3 và 5
Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 1, số mũ nhỏ nhất của 5 là 1
Nên ƯCLN(150, 360) = 2 . 3. 5 = 30
Vậy
Bài 6 trang 51 Toán lớp 6 Tập 1: Phân số bằng các phân số nào trong các phân số sau: ?
Lời giải:
Ta thấy các phân số chưa là phân số tối giản, mà phân số là phân số tối giản (vì 4 và 9 là hai số nguyên tố cùng nhau) nên ta đi rút gọn các phân số rồi so sánh.
+ Ta có: 48 = 3 . 16 = 3 . 24; 108 = 4 . 27 = 22 . 33
Các thừa số nguyên tố chung là 2, 3 và số mũ nhỏ nhất của 2 là 2; số mũ nhỏ nhất của 3 là 1.
Nên ƯCLN(48, 108) = 22 . 3 = 12.
Do đó:
+ Ta có: 80 = 8 . 10 = 23 . (2 . 5) = 24 . 5
180 = 10 . 18 = (2 . 5) .(2 . 3 . 3) = 22 . 32 . 5
Các thừa số nguyên tố chung là 2 và 5; Số 2 có số mũ nhỏ nhất là 2, số 5 có số mũ nhỏ nhất là 1.
Nên ƯCLN(80, 180) = 22 . 5 = 20
Do đó:
+ Ta có: 60 = 6 . 10 = (2. 3) . (2 . 5) = 22 . 3 . 5
130 = 10 . 13 = 2 . 5 . 13
Các thừa số nguyên tố chung là 2 và 5, số 2 và số 5 đều có số mũ nhỏ nhất là 1.
Nên ƯCLN(60, 130) = 2 . 5 = 10
Do đó: .
+ Ta có: 135 = 5 . 27 = 5 . 33; 270 = 10 . 27 = (2 . 5) .33 = 2 . 33 . 5
Các thừa số nguyên tố chung là 3 và 5. Số 3 có số mũ nhỏ nhất là 3 và 5 có số mũ nhỏ nhất là 1.
Nên ƯCLN(135, 270) = 33. 5 = 135
Do đó: .
Vậy trong các phân số đã cho, các phân số bằng là
Bài 7 trang 51 Toán lớp 6 Tập 1: Một nhóm gồm 24 bạn nữ và 30 bạn nam tham gia một số trò chơi. Có thể chia các bạn thành nhiều nhất bao nhiêu đội chơi sao cho số bạn nam cũng như số bạn nữ được chia đều vào các đội?
Lời giải:
Giả sử a là số đội chơi được chia. (a ∈ )
Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30.
Ta có: 24 = 3 . 8 = 3 . 23 ; 30 = 3 . 10 = 3 . 2 . 5
(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)
Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6.
Vậy có thể chia các bạn nhiều nhất thành 6 đội.
Bài 8 trang 51 Toán lớp 6 Tập 1: Một khu đất có dạng hình chữ nhật với chiều dài 48m, chiều rộng 42m. Người ta muốn chia khu đất ấy thành những mảnh hình vuông bằng nhau (với độ dài cạnh đo theo đơn vị mét là số tự nhiên) để trồng các loại rau. Có thể chia được bằng bao nhiêu cách? Với cách chia nào thì cạnh của mảnh đất hình vuông là lớn nhất và bằng bao nhiêu?
Lời giải:
Gọi: a là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau
b (m) là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất a,b ∈
Theo yêu cầu bài ra thì khi đó:
+ a là số các ước chung của 48 và 42
+ b là ước chung lớn nhất của 48 và 42
Ta có: 42 = 2 . 21 = 2 . 3 . 7
48 = 16 . 3 = 24 . 3
Do đó: ƯCLN(42, 48) = 2 . 3 = 6 hay b = 6 m
Mà Ư(6) = {1; 2; 3; 6) Nên ƯC(42, 48) = {1; 2; 3; 6}
Do đó có 4 ước chung của 42 và 48 hay a = 4.
Vậy:
+ Số cách chia thành những mảnh hình vuông bằng nhau là 4 cách.
+ Với cách chia có độ dài cạnh là 6m thì cạnh của mảnh đất hình vuông là lớn nhất.
Có thể em chưa biết (trang 52)
Có thể em chưa biết – Bài 1 trang 52 Toán lớp 6 Tập 1: Áp dụng thuật toán Ơ-clit để tìm ƯCLN của:
a) 126 và 162;
b) 2 268 và 1 260.
Lời giải:
a)
Bước 1: Chia số 162 cho 126
162 : 126 = 1 (dư 36) (1)
Bước 2:
+) Phép chia (1) còn dư nên lấy số chia 126 chia cho số dư 36
126 : 36 = 3 (dư 18) (2)
+) Phép chia (2) còn dư nên lấy số chia 36 chia cho số dư 18
36 : 18 = 2 (dư 0) (3)
Phép chia (3) có số dư bằng 0, ta dừng lại.
Bước 3: Số chia cuối cùng là ƯCLN phải tìm
Vậy ƯCLN(162, 126) = 18.
b) Thực hiện tương tự ta có:
Bước 1: Chia số 2 268 cho 1 260
2 268 : 1 260 = 1 (dư 1 008) (1)
Bước 2:
+) Phép chia (1) còn dư nên lấy số chia 1 260 chia cho số dư 1 008
1 260 : 1 008 = 1 (dư 252) (2)
+) Phép chia (2) còn dư nên lấy số chia 1 008 chia cho số dư 252
1 008 : 252 = 4 (dư 0) (3)
Phép chia (3) có số dư bằng 0, ta dừng lại.
Bước 3: Số chia cuối cùng là ƯCLN phải tìm
Vậy ƯCLN(2 268, 1 260) = 252.
Xem thêm các bài giải SGK Toán lớp 6 Cánh diều hay, chi tiết khác:
Bài 11: Phân tích một số ra thừa số nguyên tố
Bài 13: Bội chung và bội chung nhỏ nhất
Bài tập cuối chương 1
Bài 1: Số nguyên âm