Câu hỏi:
Một vật có khối lượng 124 g và thể tích 15 cm3 là hợp kim của đồng và kẽm. Tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm, biết rằng cứ 89g đồng thì có thể tích 10 cm3 và 7 g kẽm có thể tích 1 cm3.
Trả lời:
Gọi x và y lần lượt là số gam đồng và kẽm có trong vật đó(Điều kiện: x, y > 0; x < 124, y < 124 )Vì khối lượng của vật là 124g nên ta có phương trình x + y = 124Thể tích của x (g) đồng là (cm3)Thể tích của y (g) kẽm là (cm3).Vật có thể tích 15cm3 nên ta có phương trình: Ta có hệ phương trình:Vậy có 89 gam đồng và 35 gam kẽm.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Sau khi giải hệx+y=3x-y=1, bạn Cường kết luận rằng hẹ phương trình có hai nghiệm: x=2 và y=1. Theo em điều đó đúng hay sai? Nếu sai thì phải phát biểu thế nào cho đúng?
Câu hỏi:
Sau khi giải hệ, bạn Cường kết luận rằng hẹ phương trình có hai nghiệm: x=2 và y=1. Theo em điều đó đúng hay sai? Nếu sai thì phải phát biểu thế nào cho đúng?
Trả lời:
Kết luận của bạn Cường là sai vì nghiệm của hệ là một cặp (x; y), chứ không phải là mỗi số riêng biệt.Phát biểu đúng: “Nghiệm duy nhất của hệ là: (x; y) = (2; 1)”
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Dựa vào minh họa hình học (xét vị trí tương đương đối của hai đường thẳng xác định bởi hai phương trình trong hệ) , em hãy giải thích các kết luận sau:Hệ phương trình ax+by=ca'x+b'y=c'(a,b,c,a',b',c' khác 0)- Có vô số nghiệm nếu aa'=bb'=cc';- Vô nghiệm nếu aa'=bb'≠cc';- Có một nghiệm duy nhất nếu aa'≠bb'
Câu hỏi:
Dựa vào minh họa hình học (xét vị trí tương đương đối của hai đường thẳng xác định bởi hai phương trình trong hệ) , em hãy giải thích các kết luận sau:Hệ phương trình (a,b,c,a’,b’,c’ khác 0)- Có vô số nghiệm nếu – Vô nghiệm nếu – Có một nghiệm duy nhất nếu
Trả lời:
Ta biết tập nghiệm của phương trình ax + by = c được biểu diễn bằng đường thẳng ax + by = c và tập nghiệm của phương trình a’x + b’y = c’ được biểu diễn bằng đường thẳng a’x + b’y = c’.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Khi giải một hệ phương trình bậc nhất hai ẩn, ta biến đổi hệ phương trình đó để được một hệ phương trình mới tương đương , trong đó có một phương trình một ẩn. Có thể nói gì về số nghiệm của hệ đã cho nếu phương trình một ẩn đó:Vô nghiệm?
Câu hỏi:
Khi giải một hệ phương trình bậc nhất hai ẩn, ta biến đổi hệ phương trình đó để được một hệ phương trình mới tương đương , trong đó có một phương trình một ẩn. Có thể nói gì về số nghiệm của hệ đã cho nếu phương trình một ẩn đó:Vô nghiệm?
Trả lời:
Hệ đã cho vô nghiệm bởi vì mỗi nghiệm của hệ là nghiệm chung của hai phương trình, một phương trình vô nghiệm thì hệ không có nghiệm chung.
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Khi giải một hệ phương trình bậc nhất hai ẩn, ta biến đổi hệ phương trình đó để được một hệ phương trình mới tương đương , trong đó có một phương trình một ẩn. Có thể nói gì về số nghiệm của hệ đã cho nếu phương trình một ẩn đó: Có vô số nghiệm?
Câu hỏi:
Khi giải một hệ phương trình bậc nhất hai ẩn, ta biến đổi hệ phương trình đó để được một hệ phương trình mới tương đương , trong đó có một phương trình một ẩn. Có thể nói gì về số nghiệm của hệ đã cho nếu phương trình một ẩn đó: Có vô số nghiệm?
Trả lời:
Hệ đã cho có vô số nghiệm
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Sau khi giải hệx+y=3x-y=1, bạn Cường kết luận rằng hệ phương trình có hai nghệm: x=2 và y=1. Theo em điều đó đúng hay sai? Nếu sai thì phải phát biểu thế nào cho đúng?
Câu hỏi:
Sau khi giải hệ, bạn Cường kết luận rằng hệ phương trình có hai nghệm: x=2 và y=1. Theo em điều đó đúng hay sai? Nếu sai thì phải phát biểu thế nào cho đúng?
Trả lời:
Kết luận của bạn Cường là sai vì nghiệm của hệ là một cặp (x; y), chứ không phải là mỗi số riêng biệt.Phát biểu đúng: “Nghiệm duy nhất của hệ là: (x; y) = (2; 1)”
====== **** mời các bạn xem câu tiếp bên dưới **** =====