Câu hỏi:
Cho tam giác nhọn ABC (AB > BC) nội tiếp đường tròn (O). D là điểm chính giữa cung AC. Giả sử . Khi đó:
A.
B.
C.
Đáp án chính xác
D. Không có đáp án đúng
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hai đường tròn (O;R) và (O’;R’) cắt nhau tại A và B. Vẽ cát tuyến CAD vuông góc với AB (C∈(O), D∈(O’)). Tia CB cắt (O’) tại E, tia DB cắt (O) tại F. Khi đó
Câu hỏi:
Cho hai đường tròn (O;R) và (O’;R’) cắt nhau tại A và B. Vẽ cát tuyến CAD vuông góc với AB . Tia CB cắt (O’) tại E, tia DB cắt (O) tại F. Khi đó
A.
B.
C.
Đáp án chính xác
D. Tất cả các đáp án đều sai
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn (O;R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Khi đó tứ giác ABEC là:
Câu hỏi:
Cho đường tròn (O;R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Khi đó tứ giác ABEC là:
A. Hình bình hành
B. Hình thang
C. Hình thang cân
Đáp án chính xác
D. Hình thoi
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Qua điểm A nằm ngoài đường tròn (O) kẻ hai cát tuyến ABC và ADE với đường tròn đó (B nằm giữa A và C, D nằm giữa A và E). Kẻ dây BF//DE. Khi đó kết luận đúng là:
Câu hỏi:
Qua điểm A nằm ngoài đường tròn (O) kẻ hai cát tuyến ABC và ADE với đường tròn đó (B nằm giữa A và C, D nằm giữa A và E). Kẻ dây BF//DE. Khi đó kết luận đúng là:
A. AC. AE = DC. DF
B. AC. DF = DC. AE
Đáp án chính xác
C. AE. CE = DF. CF
D. AC. CE = DC. CF
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Trên (O) lấy điểm D thuộc cung AC. Gọi E = AC∩BD, F = AD∩BC. Khi đó mệnh đề đúng là:
Câu hỏi:
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O. Trên (O) lấy điểm D thuộc cung AC. Gọi . Khi đó mệnh đề đúng là:
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi P, Q, R lần lượt là giao điểm của các tia phân giác trong góc A, B, C với đường tròn. Giả sử rằng S = AP∩RQ. Khi đó:
Câu hỏi:
Cho tam giác ABC nội tiếp đường tròn tâm O. Gọi P, Q, R lần lượt là giao điểm của các tia phân giác trong góc A, B, C với đường tròn. Giả sử rằng . Khi đó:
A.
B.
C.
D.
Đáp án chính xác
Trả lời:
====== **** mời các bạn xem câu tiếp bên dưới **** =====