Câu hỏi:
Cho tam giác đều ABC ngoại tiếp đường tròn bán kính 1cm. Diện tích của tam giác ABC bằng:
Hãy chọn câu trả lời đúng.
Trả lời:
– Chọn D.
– Gọi O là tâm đường tròn nội tiếp Δ ABC, H là tiếp điểm thuộc BC.
Đường phân giác AO của góc A cũng là đường cao nên A, O, H thẳng hàng.
Ta có: HB = BC, ∠HAC = 30o, AH = 3.OH = 3 (cm)
====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho hình 79 trong đó AB, AC theo thứ tự là các tiếp tuyến tại B, tại C của đường tròn (O). Hãy kể tên một vài đoạn thẳng bằng nhau, một vài góc bằng nhau trong hình.
Câu hỏi:
Cho hình 79 trong đó AB, AC theo thứ tự là các tiếp tuyến tại B, tại C của đường tròn (O). Hãy kể tên một vài đoạn thẳng bằng nhau, một vài góc bằng nhau trong hình.
Trả lời:
Các đoạn thẳng bằng nhau là: AB = AC ; OB = OC
Các góc bằng nhau là: ∠(BAO) = ∠(CAO) ; ∠(BOA) = ∠(COA)
∠(ABO) = ∠(ACO) = 90o====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Hãy nêu cách tìm tâm của một miếng gỗ hình tròn bằng “thước phân giác” (xem hình vẽ trong khung ở đầu bài 6).
Câu hỏi:
Hãy nêu cách tìm tâm của một miếng gỗ hình tròn bằng “thước phân giác” (xem hình vẽ trong khung ở đầu bài 6).
Trả lời:
– Ta đặt miếng gỗ hình tròn tiếp xúc với hai cạnh của thước.
– Kẻ theo “ tia phân giác “ của thước, ta vẽ được một đường kính của hình tròn
– Xoay miếng gỗ rồi làm tiếp tục như trên, ta được đường kính thứ hai.
– Giao điểm của hai đường kính chính là tâm đường tròn====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC. Gọi I là giao điểm của các đường phân giác các góc trong của tam giác; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ I đến các cạnh BC, AC, AB (h.80). Chứng minh rằng ba điểm D, E, F nằm trên cùng một đường tròn tâm I.
Câu hỏi:
Cho tam giác ABC. Gọi I là giao điểm của các đường phân giác các góc trong của tam giác; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ I đến các cạnh BC, AC, AB (h.80). Chứng minh rằng ba điểm D, E, F nằm trên cùng một đường tròn tâm I.
Trả lời:
Theo tính chất tia phân giác, ta có:
AI là tia phân giác của góc BAC
⇒ IE = IF
Tương tự: CI là tia phân giác của góc ACB
⇒ IE = ID
Do đó: IE = IF = ID
Vậy 3 điểm D, E, F cùng nằm trên đường tròn tâm I====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho tam giác ABC, K là giao điểm các đường phân giác của hai góc ngoài tại B và C; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ K đến các đường thẳng BC, AC, AB (h.81). Chứng minh rằng ba điểm D, E, F năm trên cùng một đường tròn có tâm K.
Câu hỏi:
Cho tam giác ABC, K là giao điểm các đường phân giác của hai góc ngoài tại B và C; D, E, F theo thứ tự là chân các đường vuông góc kẻ từ K đến các đường thẳng BC, AC, AB (h.81). Chứng minh rằng ba điểm D, E, F năm trên cùng một đường tròn có tâm K.
Trả lời:
Theo tính chất tia phân giác, ta có:
AK là tia phân giác của góc BAC
⇒ KE = KF
Tương tự: CK là tia phân giác của góc ngoài của góc ACB
⇒ KE = KD
Do đó: KE = KF = KD
Vậy 3 điểm D, E, F cùng nằm trên đường tròn tâm K====== **** mời các bạn xem câu tiếp bên dưới **** =====
- Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
Chứng minh rằng OA vuông góc với BC.
Câu hỏi:
Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).
Chứng minh rằng OA vuông góc với BC.Trả lời:
Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.
Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)====== **** mời các bạn xem câu tiếp bên dưới **** =====