Giải SBT Toán lớp 10 Bài 1: Tọa độ của vectơ
Giải SBT Toán 10 trang 58 Tập 2
Bài 1 trang 58 SBT Toán 10 Tập 2: Cho hai vectơ
a) Tìm toạ độ của vectơ .
b) Tính các tích vô hướng: .
Lời giải:
a) Ta có ; ;
Vậy .
b) Ta có:
Ta lại có:
Vậy tích vô hướng của .
Bài 2 trang 58 SBT Toán 10 Tập 2: Cho ba vectơ . Tìm toạ độ của các vectơ:
a)
b)
Lời giải:
a)
Ta có
Vậy = (1 + 4 – (– 3); 1 + 4 – (– 3))= (8; 8)
b) Ta có: = – 1.2 + (– 1).2 = – 4
Khi đó: = – 4.(1; 1) = (– 4; – 4).
Giải SBT Toán 10 trang 59 Tập 2
Bài 3 trang 59 SBT Toán 10 Tập 2: Cho tam giác MNP có toạ độ các đỉnh là M(3; 3), N(7; 3) và P(3; 7).
a) Tìm toạ độ trung điểm E của cạnh MN.
b) Tim toạ độ trọng tâm G của tam giác MNP.
Lời giải:
a) Gọi E(xE; yE) là trung điểm của MN
Ta có
Vậy E(5; 3).
b) Gọi G(xG; yG) là trọng tâm của tam giác MNP
Ta có
Vậy .
Bài 4 trang 59 SBT Toán 10 Tập 2: Cho tam giác ABC có toạ độ các đỉnh là A(1; 3), B(3; 1) và C(6; 4).
a) Tính độ đài ba cạnh của tam giác ABC và số đo của góc B.
b) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.
Lời giải:
a) + Độ dài các cạnh của tam giác ABC
Suy ra AB = .
Suy ra AB = .
Suy ra AC = .
+ Tính số đo góc B
Ta có
Mà = 90o.
b) Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC:
Suy ra
Vậy .
Bài 5 trang 59 SBT Toán 10 Tập 2: Cho năm điểm A(2 ; 0), B(0; – 2), C(3; 3), D(– 2; – 2), E(1; – 1). Trong các điểm đã cho, hãy tìm điểm:
a) Thuộc trục hoành;
b) Thuộc trục tung;
c) Thuộc đường phân giác của góc phần tư thứ nhất.
Lời giải:
a) Điểm thuộc trục hoành là điểm có tung độ bằng 0. Do đó các điểm thuộc trục hoành là: A(2; 0).
b) Điểm thuộc trục hoành là điểm có hoành độ bằng 0. Do đó các điểm thuộc trục tung là: B(0; – 2).
c) Điểm thuộc đường phân giác của góc phần tư thứ nhất có hoành độ bằng tung độ. Do đó các điểm thuộc đường phân giác của góc phần tư thứ nhất là: C(3; 3); D(– 2; – 2).
Bài 6 trang 59 SBT Toán 10 Tập 2: Cho điểm M(4; 5). Tìm toạ độ:
a) Điểm H là hình chiếu vuông góc của điểm M trên trục Ox;
b) Điểm M’ đối xứng với M qua trục Ox;
c) Điểm K là hình chiếu vuông góc của điểm M trên trục Oy;
d) Điểm M’’ đối xứng với M qua trục Oy;
e) Điểm C đối xứng với M qua gốc O.
Lời giải:
a) Gọi H(a; 0) (a ≠ 0) là hình chiếu vuông góc của M trên trục Ox
Ta có
Mà
Do đó chỉ có a = 4 là thỏa mãn điều kiện.
Vậy H(4; 0) là hình chiếu vuông góc của M trên trục Ox.
b) Ta có điểm M’(x’; y’) đối xứng với điểm M(x; y) qua trục Ox
Vậy M’(4; – 5) là điểm đối xứng với M qua trục Ox.
c) Gọi K(0; b) (b ≠ 0) là hình chiếu vuông góc của M trên trục Oy.
Ta có
Mà
Do đó chỉ có b = 5 là thỏa mãn điều kiện.
Vậy K(0; 5) là hình chiếu vuông góc của M trên trục Oy.
d) Ta có điểm M”(x”; y”) đối xứng với điểm M(x; y) qua trục Oy
Vậy M”(– 4; 5) là điểm đối xứng với M qua trục Oy.
e) Gọi C(x; y) là điểm đối xứng với M qua gốc toạ độ O
Suy ra O là trung điểm của MC.
Ta có
Vậy C(– 4; – 5).
Bài 7 trang 59 SBT Toán 10 Tập 2: Cho ba điểm A(1; 1), B(2; 4), C(4; 4).
a) Tìm toạ độ điểm D sao cho ABCD là một hình bình hành.
b) Tìm toạ độ giao điểm hai đường chéo của hình bình hành ABCD.
Lời giải:
a)
Giả sử D(x; y)
Ta có
Để ABCD là hình bình hành thì
Vậy D(3; 1).
b) Gọi I là giao điểm của hai đường chéo AC và BD
Vậy I là trung điểm của AC và BD theo tính chất hình hành
Ta có
Vậy .
Bài 8 trang 59 SBT Toán 10 Tập 2: Cho tam giác ABC có toạ độ các đỉnh là A(1; 1), B(7; 3), C(4; 7) và cho các điểm M(2; 3), N(3; 5).
a) Chứng minh bốn điểm A, M, N, C thẳng hàng.
b) Chứng minh trọng tâm của các tam giác ABC và MNB trùng nhau.
Lời giải:
a) Ta có suy ra . Do đó 3 điểm A, M, N thẳng hàng
Ta có suy ra . Do đó 3 điểm A, M, C thẳng hàng
Vì 3 điểm A, M, N thẳng hàng nên N thuộc đường thẳng AM; 3 điểm A, M, C thẳng hàng nên C thuộc đường thẳng AM.
Vậy 4 điểm A, M, N, C thẳng hàng.
b) Goi G(x; y) là trọng tâm tam giác ABC
Ta có
Suy ra G .
Goi G’(x’; y’) là trọng tâm tam giác MNB
Ta có
Suy ra G’ .
Do đó điểm G trùng G’.
Vậy trọng tâm tam giác ABC và MNB trùng nhau.
Bài 9 trang 59 SBT Toán 10 Tập 2: Cho bốn điểm M(6; – 4), N(7; 3), P(0; 4), Q(– 1; -3). Chứng minh rằng tứ giác MNPQ là hình vuông.
Lời giải:
Ta có nên hai véc tơ cùng phương suy ra MN song song với PQ và MN = QP (1)
Ta có nên hai véc tơ cùng phương suy ra MQ song song với NP và MQ = NP (2)
Mà vậy MN = NP = PQ = MQ (3)
Từ (1); (2); (3) suy ra tứ giác MNPQ là hình thoi (4)
Ta có vậy MN NP.
Tứ giác MNPQ là hình thoi và có 1 góc vuông nên tứ giác MNPQ là hình vuông.
Bài 10 trang 59 SBT Toán 10 Tập 2: Tính góc giữa hai vectơ và trong các trường hợp sau:
a)
b)
c)
Lời giải:
a) Ta có
Vậy .
b) Ta có
Vậy .
c) Ta có .
Vậy .
Giải SBT Toán 10 trang 60 Tập 2
Bài 11 trang 60 SBT Toán 10 Tập 2: Cho điểm A(1; 4). Gọi B là điểm đối xứng với điểm A qua gốc toạ độ O. Tìm toạ độ của điểm C có tung độ bằng 3, sao cho tam giác ABC vuông tại C.
Lời giải:
Vì B là điểm đối xứng với A qua gốc toạ độ nên B(– 1; – 4)
Giả sử C(x; 3) .
Vì tam giác ABC vuông tại C nên ta có .
Vậy hoặc .
Bài 12 trang 60 SBT Toán 10 Tập 2: Cho vectơ = (2; 2). Hãy tìm toạ độ một vectơ đơn vị cùng hướng với vectơ .
Lời giải:
Ta có
Đặt
Ta có vectơ là vectơ đơn vị cùng hướng với .
Xem thêm các bài giải SBT Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 8
Bài 2: Đường thẳng trong mặt phẳng tọa độ
Bài 3: Đường tròn trong mặt phẳng tọa độ
Bài 4: Ba đường conic trong mặt phẳng tọa độ