Lý thuyết Toán lớp 10 Bài 12: Số gần đúng và sai số
A.Lý thuyết Số gần đúng và sai số
1. Số gần đúng
Trong nhiều trường hợp, ta không biết hoặc khó biết số đúng (kí hiệu là ) mà chỉ tìm được giá trị xấp xỉ nó. Giá trị này được gọi là số gần đúng, kí hiệu là a.
Chú ý:
Ta có thể sử dụng máy tính cầm tay để tìm giá trị gần đúng của các biểu thức chứa các số vô tỉ như π, ,…
Ví dụ:
+ Hình tròn có bán kính R = 2cm.
Chu vi của hình tròn là 2.π.2 = 4π ≈ 12,57 (cm).
Vậy 4π là số đúng; 12,57 là số gần đúng của chu vi hình tròn.
+ Ta có .
Vậy là số đúng; 1,44 là số gần đúng.
2. Sai số tuyệt đối và sai số tương đối
a) Sai số tuyệt đối
Giá trị phản ánh mức độ sai lệch giữa số đúng và số gần đúng a, được gọi là sai số tuyệt đối của số gần đúng a.
Ví dụ:
Ta có: .
Suy ra là số đúng; a = 5357 là số gần đúng.
Khi đó ta có: .
Vậy ∆a = 0,034 là sai số tuyệt đối của số gần đúng a = 5357.
Chú ý:
+ Trên thực tế, nhiều khi ta không biết nên cũng không biết ∆a. Tuy nhiên, ta có thể đánh giá được ∆a không vượt quá một số dương d nào đó.
+ Nếu ∆a ≤ d thì a – d ≤ ≤ a + d, khi đó ta viết = a ± d và hiểu là số đúng nằm trong đoạn [a – d; a + d]. Do đó d càng nhỏ thì a càng gần nên d được gọi là độ chính xác của số gần đúng.
+ Trong các phép đo, độ chính xác d của số gần đúng bằng một nửa đơn vị của thước đo. Chẳng hạn, một thước đo có chia vạch đến xentimét thì mọi giá trị đo nằm giữa 6,5cm và 7,5cm đều được coi là 7cm. Vì vậy, thước đo có thang đo càng nhỏ thì cho giá trị đo càng chính xác.
Ví dụ: Trên hộp bánh có ghi khối lượng tịnh là 500g ± 5g.
+ Khối lượng thực tế của hộp bánh là số đúng. Tuy không biết nhưng ta xem khối lượng hộp bánh là 500g nên 500 là số gần đúng cho . Độ chính xác d = 5 (g).
+ Giá trị của nằm trong đoạn [500 – 5; 500 + 5] hay [495; 505].
b) Sai số tương đối
Sai số tương đối của số gần đúng a, kí hiệu là δa, là tỉ số giữa sai số tuyệt đối và |a|, tức là .
Ví dụ: Bao bì của một chai nước suối có ghi thể tích thực là 350ml, biết rằng sai số tuyệt đối là 2ml. Tìm sai số tương đối của chai nước suối.
Hướng dẫn giải
Ta có a = 350 (ml) và ∆a = 2 (ml), do đó sai số tương đối là:
.
Nhận xét:
Nếu thì ∆a ≤ d, do đó . Nếu càng nhỏ thì chất lượng của phép đo hay tính toán càng cao. Người ta thường viết sai số tương đối dưới dạng phần trăm.
Ví dụ: Trên các chai cồn xịt khuẩn có ghi thể tích thực như sau:
+ Chai 1: 500ml ± 3ml;
+ Chai 2: 1000ml ± 8ml.
Chai nào ghi thể tích thực chính xác hơn tính theo sai số tương đối?
Hướng dẫn giải
+ Chai 1: a1 = 500 (ml) và d = 3 (ml), do đó sai số tương đối là:
.
+ Chai 2: a2 = 1000 (ml) và d = 8 (ml), do đó sai số tương đối là:
.
Vì 0,6% < 0,8% nên δ1 < δ2.
Vậy chai 1 ghi thể tích thực chính xác hơn chai 2 tính theo sai số tương đối.
3. Quy tròn số gần đúng
Số thu được sau khi thực hiện làm tròn số được gọi là số quy tròn. Số quy tròn là một số gần đúng của số ban đầu.
Ví dụ:
+ Số quy tròn của số 12,64 đến hàng đơn vị là 13;
+ Số quy tròn của số 500,876 đến hàng phần mười là 500,9.
Chú ý:
•Đối với chữ số hàng làm tròn:
+ Giữ nguyên nếu chữ số ngay bên phải nó nhỏ hơn 5;
+ Tăng 1 đơn vị nếu chữ số ngay bên phải nó lớn hơn hoặc bằng 5.
•Đối với chữ số sau hàng làm tròn:
+ Bỏ đi nếu ở phần thập phân;
+ Thay bởi các chữ số 0 nếu ở phần số nguyên.
Ví dụ:
a) Làm tròn số 5437,56 đến hàng trăm, số 22,758 đến hàng phần mười và số đúng d ∈ [6,5; 7,5) đến hàng đơn vị. Đánh giá sai số tuyệt đối của phép làm tròn số đúng d.
b) Cho số gần đúng a = 3,67 với độ chính xác d = 0,02. Số đúng thuộc đoạn nào? Nếu làm tròn số a thì nên làm tròn đến hàng nào? Vì sao?
Hướng dẫn giải
a) Số quy tròn của số 5437,56 đến hàng trăm là 5400;
Số quy tròn của số 22,758 đến hàng phần mười là 22,8;
Mọi số đúng d ∈ [6,5; 7,5) khi làm tròn đến hàng đơn vị đều thu được số quy tròn là 7 và sai số tuyệt đối |d – 7| ≤ 0,5.
b) Số đúng thuộc đoạn [3,67 – 0,02; 3,67 + 0,02] hay [3,65; 3,69]. Khi làm tròn số gần đúng a ta nên làm tròn đến hàng phần chục do chữ số hàng phần trăm của a là chữ số không chắc chắn đúng.
Nhận xét:
+ Khi thay số đúng bởi số quy tròn đến một hàng nào đó thì sai số tuyệt đối của số quy tròn không vượt quá nửa đơn vị của hàng làm tròn.
+ Cho số gần đúng a với độ chính xác d. Khi được yêu cầu làm tròn số a mà không nói rõ làm tròn đến hàng nào thì ta làm tròn số a đến hàng thấp nhất mà d nhỏ hơn 1 đơn vị của hàng đó.
Ví dụ: Cho số gần đúng a = 213 666 với độ chính xác d = 10. Hãy viết số quy tròn của số a.
Hướng dẫn giải
Vì độ chính xác đến hàng chục (d = 10) nên ta làm tròn đến hàng trăm theo quy tắc làm tròn như trên. Số quy tròn của a là 213700.
B.Bài tập tự luyện
Bài 1. Giải thích kết quả “Đo độ sâu của mực nước biển ở một vùng cho kết quả là 2136 ± 5 m” và thực hiện làm tròn số gần đúng.
Hướng dẫn giải
Độ sâu thực tế của mực nước biển là số đúng. Tuy không biết nhưng ta biết kết quả đo đạc là 2136 m nên 2136 là số gần đúng cho . Độ chính xác d = 5 (m).
Vì độ chính xác đến hàng đơn vị (d = 5) nên ta làm tròn đến hàng chục theo quy tắc làm tròn. Do đó số quy tròn của a là 2140.
Bài 2. Các nhà vật lý sử dụng ba phương pháp đo hằng số Hubble lần lượt cho kết quả như sau:
67,31 ± 0,96;
67,90 ± 0,55;
67,74 ± 0,46.
Phương pháp nào chính xác nhất tính theo sai số tương đối?
Hướng dẫn giải
Với phương pháp đo thứ nhất: a1 = 67,31 và d1 = 0,96, do đó sai số tương đối là:
Với phương pháp đo thứ hai: a2 = 67,90 và d2 = 0,55, do đó sai số tương đối là:
Với phương pháp đo thứ ba: a3 = 67,74 và d3 = 0,46, do đó sai số tương đối là:
Vì 0,68% < 0,81% < 1,4% nên δ3 < δ2 < δ1.
Do đó phương pháp đo thứ ba là chính xác nhất tính theo sai số tương đối.
Bài 3. Làm tròn số 4372,8 đến hàng chục và 8,125 đến hàng phần trăm rồi tính sai số tuyệt đối của số quy tròn.
Hướng dẫn giải
+ Số quy tròn của số 4372,8 đến hàng chục là 4370. Sai số tuyệt đối là
∆ = |4370 − 4372,8| = 2,8.
+ Số quy tròn của số 8,125 đến hàng phần trăm là 8,13. Sai số tuyệt đối là
∆’ = |8,13 – 8,125| = 0,005.
Xem thêm các bài tóm tắt lý thuyết Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Lý thuyết Bài 11: Tích vô hướng của hai vectơ
Lý thuyết Bài 12: Số gần đúng và sai số
Lý thuyết Bài 13: Các số đặc trưng đo xu thế trung tâm
Lý thuyết Bài 14: Các số đặc trưng đo độ phân tán
Lý thuyết Bài 15: Hàm số