Giải bài tập Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Giải toán lớp 10 trang 120 Tập 1 Chân trời sáng tạo
HĐ Khởi động trang 120 Toán lớp 10: Nhiệt độ không khí trung bình các tháng trong năm 2019 tại Lai Châu và Lâm Đồng (đơn vị: độ C)
Theo bạn, địa phương nào có thời tiết ôn hòa hơn?
Lời giải:
Nếu so sánh nhiệt độ trung bình thì 2 địa phương đều có thời tiết ôn hòa dễ chịu. Tuy nhiên so sánh sự chên lệch nhiệt độ giữa các tháng thì Lâm Đồng có thời tiết ôn hòa hơn do tháng thấp nhất là khoảng 15 độ (cao hơn Lai Châu) và sự chênh lệch nhiệt độ giữa các tháng không lớn (khoảng 4 độ C).
1. Khoảng biến thiên và khoảng tứ phân vị
HĐ Khám phá 1 trang 120 Toán lớp 10: Thời gian hoàn thành bài chạy 5 km (tính theo phút) của hai nhóm thanh niên được cho ở bảng sau:
a) Hãy tính độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong từng nhóm.
b) Nhóm nào có thành tích chạy đồng đều hơn?
Lời giải:
a) Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 1 là:
(phút)
Độ chênh lệch giữa thời gian chạy của người nhanh nhất và người chậm nhất trong nhóm 2 là:
(phút)
b) Dễ thấy: nhóm 2 có thành tích chạy đồng đều hơn.
Giải toán lớp 10 trang 121 Tập 1 Chân trời sáng tạo
Thực hành 1 trang 121 Toán lớp 10: Hãy tìm khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a) 10; 13; 15; 2; 10; 19; 2; 5; 7.
b) 15; 19; 10; 5; 9; 10; 1; 2; 5; 15.
Phương pháp giải:
Cho mẫu số liệu:
Sắp xếp mẫu số liệu theo thứ tự không giảm:
+) Khoảng biến thiên:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
Khoảng tứ phân vị:
Lời giải:
a) Xét mẫu số liệu đã sắp xếp là:
Khoảng biến thiên của mẫu số liệu là:
Cỡ mẫu là là số lẻ nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu: . Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
b) Xét mẫu số liệu đã sắp xếp là:
Khoảng biến thiên của mẫu số liệu là:
Cỡ mẫu là là số chẵn nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu: . Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
Vận dụng 1 trang 121 Toán lớp 10: Dưới đây là bảng số liệu thống kê của Biểu đồ nhiệt độ trung bình các tháng trong năm 2019 của hai tỉnh Lai Châu và Lâm Đồng (được đề cập đến ở hoạt động khởi động của bài học).
a) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của nhiệt độ trung bình mỗi tháng của tỉnh Lai Châu và Lâm Đồng.
b) Hãy cho biết trong một năm, nhiệt độ ở địa phương nào ít thay đổi hơn.
Phương pháp giải:
a) Cho mẫu số liệu:
Sắp xếp mẫu số liệu theo thứ tự không giảm:
+) Khoảng biến thiên:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
Khoảng tứ phân vị:
b) So sánh khoảng biến thiên
Lời giải:
a)
+) Tỉnh Lai Châu: Xét mẫu số liệu đã sắp xếp là:
Khoảng biến thiên của mẫu số liệu là:
Cỡ mẫu là là số chẵn nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu: . Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
+) Tỉnh Lâm Đổng: Xét mẫu số liệu đã sắp xếp là:
Khoảng biến thiên của mẫu số liệu là:
Cỡ mẫu là là số chẵn nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu: . Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
Giải toán lớp 10 trang 122 Tập 1 Chân trời sáng tạo
Thực hành 2 trang 122 Toán lớp 10: Hãy tìm giá trị ngoại lệ của mẫu số liệu: 37; 12; 3; 9; 10; 9; 12; 3; 10.
Phương pháp giải:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
Khoảng tứ phân vị:
Bước 3: Tìm x trong mẫu sao cho hoặc
Lời giải:
Xét mẫu số liệu đã sắp xếp là:
Cỡ mẫu là là số lẻ nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu: . Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
Giá trị ngoại lệ x thỏa mãn hoặc .
Vậy giá trị ngoại lệ của mẫu số liệu đó là
2. Phương sai và độ lệch chuẩn
HĐ Khám phá 2 trang 122 Toán lớp 10: Hai cung thủ A và B đã ghi lại kết quả từng lần bắn của mình ở bảng sau:
Cung thủ A |
8 |
9 |
10 |
7 |
6 |
10 |
6 |
7 |
9 |
8 |
Cung thủ B |
10 |
6 |
8 |
7 |
9 |
9 |
8 |
7 |
8 |
8 |
a) Tính kết quả trung bình của mỗi cung thủ trên
b) Cung thủ nào có kết quả các lần bắn ổn định hơn?
Lời giải:
a) Kết quả trung bình của Cung thủ A là:
Kết quả trung bình của Cung thủ A là:
b)
+) Khoảng biến thiên số điểm của cung thủ A là:
Xét mẫu số liệu đã sắp xếp là:
Cỡ mẫu là là số chẵn nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu:. Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
+) Khoảng biến thiên số điểm của cung thủ A là:
Xét mẫu số liệu đã sắp xếp là:
Cỡ mẫu là là số chẵn nên giá trị tứ phân vị thứ hai là:
Tứ phân vị thứ nhất là trung vị của mẫu:. Do đó
Tứ phân vị thứ ba là trung vị của mẫu: . Do đó
Khoảng tứ phân vị của mẫu là:
=> Nếu so sánh khoảng chênh lệch và khoảng tứ phân vị thì không xác định được kết quả của cung thủ nào ổn định hơn.
Giải toán lớp 10 trang 124 Tập 1 Chân trời sáng tạo
Vận dụng 2 trang 124 Toán lớp 10: Bảng dưới đây thống kê tổng số giờ nắng trong năm 2019 theo từng tháng được đo bởi hai trạm quan sát khí tượng đặt ở Tuyên Quang và Cà Mau.
Tháng |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Tuyên Quang |
25 |
89 |
72 |
117 |
106 |
177 |
156 |
203 |
227 |
146 |
117 |
145 |
Cà Mau |
180 |
223 |
257 |
245 |
191 |
111 |
141 |
134 |
130 |
122 |
157 |
173 |
a) Hãy tính phương sai và độ lệch chuẩn của dữ liệu từng tỉnh.
b) Nêu nhận xét về sự thay đổi tổng số giờ nắng theo từng tháng ở mỗi tỉnh.
Phương pháp giải:
Cho mẫu số liệu
Bước 1. Tính số trung bình
Bước 2: +) Tính phương sai hoặc
+) Độ lệch chuẩn
Lời giải:
+) Tuyên Quang:
Số giờ nắng trung bình
Phương sai:
Độ lệch chuẩn
+) Cà Mau:
Số giờ nắng trung bình
Phương sai:
Độ lệch chuẩn
=> Nhận xét: Ở Tuyên Quang tổng số giờ nắng theo từng tháng thay đổi nhiều hơn so với ở Cà Mau.
Bài tập
Bài 1 trang 124 Toán lớp 10: Hãy chọn ngẫu nhiên trong lớp ra 5 bạn nam và 5 bạn nữ rồi đo chiều cao các bạn đó. So sánh xem chiều cao của các bạn nam hay các bạn nữ đồng đều hơn.
Phương pháp giải:
Từ mẫu số liệu so sánh hai giá trị: Khoảng biến thiên hoặc khoảng tứ phân vị.
+ Nếu trong mẫu không có số liệu nào quá lớn hay quá nhỏ => so sánh khoảng biến thiên
+ Nếu trong mẫu có 1 số liệu quá lớn hoặc quá nhỏ => so sánh khoảng tứ phân vị.
Lời giải:
Chiều cao 5 HS nam |
170 |
164 |
172 |
168 |
176 |
Chiều cao 5 HS nữ |
155 |
152 |
157 |
162 |
160 |
+) Khoảng biến thiên chiều cao của các học sinh nam là: 176 – 164 =12
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: , là số lẻ nên
là trung vị của nửa số liệu . Do đó
là trung vị của nửa số liệu . Do đó
Khoảng tứ phân vị
+) Khoảng biến thiên chiều cao của các học sinh nữ là:
+) Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2: , là số lẻ nên
là trung vị của nửa số liệu . Do đó
là trung vị của nửa số liệu . Do đó
Khoảng tứ phân vị
Kết luận: So sánh khoảng biến thiên hay tứ phân vị thì theo mẫu số liệu trên, chiều cao của 5 bạn nữ là đồng đều hơn.
Bài 2 trang 124 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên, khoảng tứ phân vị và các giá trị ngoại lệ của các mẫu số liệu sau:
a) 6; 8; 3; 4; 5; 6; 7; 2; 4.
b) 13; 37; 64; 12; 26; 43; 29; 23.
Phương pháp giải:
Cho mẫu số liệu
+) số trung bình
+) phương sai hoặc
=> Độ lệch chuẩn
Sắp xếp mẫu số liệu theo thứ tự không giảm:
+) Khoảng biến thiên:
Tứ phân vị:
Bước 1: Sắp xếp mẫu số liệu theo thứ tự không giảm:
Bước 2:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Khoảng tứ phân vị:
+) x là giá trị ngoại lệ trong mẫu nếu hoặc
Lời giải:
a) Số trung bình: .
Phương sai mẫu số liệu là:
(62 + 82 + 32 + 42 + 52 + 62 + 72 + 22 + 42) – 52 = .
Độ lệch chuẩn mẫu số liệu là: .
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 3; 4; 4; 5; 6; 6; 7; 8.
Khoảng biến thiên của mẫu là: R = 8 – 2 = 6.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2 = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 3; 4; 4. Do đó Q1 = 3,5.
Tứ phân vị thứ ba là trung vị của mẫu: 6; 6; 7; 8. Do đó Q3 = 6,5.
Khoảng tứ phân vị của mẫu là: ∆Q = 6,5 – 3,5 = 3.
Ta có: Q3 + 1,5∆Q = 6,5 + 1,5 . 3 = 11 và Q1 – 1,5∆Q = 3,5 – 1,5 . 3 = – 1.
Do đó mẫu số liệu không có giá trị ngoại lệ.
b)
Số trung bình: .
Phương sai mẫu số liệu là:
(132 + 372 + 642 + 122 + 262 + 432 + 292 + 232) – (30,875)2 ≈ 255,86.
Độ lệch chuẩn mẫu số liệu là: .
Sắp xếp các số liệu theo thứ tự không giảm, ta được:
12; 13; 23; 26; 29; 37; 43; 64.
Khoảng biến thiên của mẫu là: R = 64 – 12 = 52.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2 = .
Tứ phân vị thứ nhất là trung vị của mẫu: 12; 13; 23; 26. Do đó Q1 = 18.
Tứ phân vị thứ ba là trung vị của mẫu: 29; 37; 43; 64. Do đó Q3 = 40.
Khoảng tứ phân vị của mẫu là: ∆Q = 40 – 18 = 22.
Ta có: Q3 + 1,5∆Q = 40 + 1,5 . 22 = 73 và Q1 – 1,5∆Q = 18 – 1,5 . 22 = – 15.
Do đó mẫu số liệu không có giá trị ngoại lệ.
Giải toán lớp 10 trang 125 Tập 1 Chân trời sáng tạo
Bài 3 trang 125 Toán lớp 10: Hãy tìm độ lệch chuẩn, khoảng biến thiên và khoảng tứ phân vị của các mẫu số liệu sau:
a)
b)
Giá trị |
0 |
1 |
2 |
3 |
4 |
Tần suất |
0,1 |
0,2 |
0,4 |
0,2 |
0,1 |
Phương pháp giải:
Cho bảng số liệu:
Giá trị |
… |
|||
Tần số |
… |
+) Số trung bình:
+) Phương sai
=> Độ lệch chuẩn
Sắp xếp mẫu số liệu theo thứ tự không giảm:
+) Khoảng biến thiên:
Tứ phân vị:
+) Khoảng tứ phân vị:
Lời giải:
a) +) Số trung bình
+) phương sai hoặc
=> Độ lệch chuẩn
+) Khoảng biến thiên:
Tứ phân vị:
+) Khoảng tứ phân vị:
b) Giả sử cỡ mẫu . Khi đó mẫu số liệu trở thành:
Giá trị |
0 |
1 |
2 |
3 |
4 |
Tần số |
1 |
2 |
4 |
2 |
1 |
+) Số trung bình
+) phương sai hoặc
=> Độ lệch chuẩn
+) Khoảng biến thiên:
Tứ phân vị:
+) Khoảng tứ phân vị:
Bài 4 trang 125 Toán lớp 10: Hãy so sánh số trung bình, phương sai và độ lệch chuẩn của ba mẫu số liệu sau:
Mẫu 1: 0,1; 0,3; 0,5; 0,5; 0,3; 0,7.
Mẫu 2: 1,1; 1,3; 1,5; 1,5; 1,3; 1,7.
Mẫu 3: 1; 3; 5; 5; 3; 7.
Phương pháp giải:
+) số trung bình
+) Phương sai hoặc
+) Độ lệch chuẩn
Lời giải:
Mẫu 1:
+) Số trung bình:
+) Phương sai
+) Độ lệch chuẩn
Mẫu 2:
+) Số trung bình:
+) Phương sai
+) Độ lệch chuẩn
Mẫu 3:
+) Số trung bình:
+) Phương sai
+) Độ lệch chuẩn
Kết luận:
Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.
Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.
Bài 5 trang 125 Toán lớp 10: Sản lượng lúa các năm từ 2014 đến 2018 của hai tỉnh Thái Bình và Hậu Giang được cho ở bảng sau (đơn vị: nghìn tấn).
a) Hãy tính độ lệch chuẩn và khoảng biến thiên của sản lượng lúa từng tỉnh.
b) Tỉnh nào có sản lượng lúa ổn định hơn? Tại sao?
Phương pháp giải:
a)
+) Tình độ lệch chuẩn:
Bước 1: Tìm số trung bình
Bước 2: Tính phương sai hoặc
=> Độ lệch chuẩn
+) Khoảng biến thiên = số liệu lớn nhất – số liệu nhỏ nhất
b)
So sánh khoảng biến thiên và độ lệch chuẩn, tỉnh nào có khoảng biến thiên và độ lệch chuẩn nhỏ hơn thì có sản lượng lúa ổn định hơn.
Lời giải:
a)
Tỉnh Thái Bình:
Số trung bình
Phương sai
=> Độ lệch chuẩn
+) Khoảng biến thiên
Tỉnh Hậu Giang:
Số trung bình
Phương sai
=> Độ lệch chuẩn
+) Khoảng biến thiên
b)
So sánh khoảng biến thiên và độ lệch chuẩn ta đều thấy tỉnh Hậu Giang có sản lượng lúa ổn định hơn.
Bài 6 trang 125 Toán lớp 10: Kết quả điều tra mức lương hằng tháng của một số công nhân của hai nhà máy A và B được cho ở bảng sau (đơn vị: triệu đồng):
a) Hãy tìm số trung bình, mốt, tứ phân vị và độ lệch chuẩn của hai mẫu số liệu lấy từ nhà máy A và nhà máy B.
b) Hãy tìm các giá trị ngoại lệ trong mỗi mẫu số liệu trên. Công nhân nhà máy nào có mức lương cao hơn? Tại sao?
Phương pháp giải:
a)
+) Số trung bình:
+) Mốt: là giá trị xuất hiện nhiều nhất trong mẫu số liệu.
+) Tứ phân vị:
Sắp xếp mẫu số liệu theo thứ tự không giảm:
là trung vị của nửa số liệu đã sắp xếp bên trái (không bao gồm nếu n lẻ)
là trung vị của nửa số liệu đã sắp xếp bên phải (không bao gồm nếu n lẻ)
+) Độ lệch chuẩn
Tính phương sai
b)
+) x là giá trị ngoại lệ nếu hoặc
+) So sánh trung vị (do một mẫu có số liệu quá lớn so với các số liệu khác): nhà máy nào có trung vị lớn hơn thì có mức lương cao hơn.
Lời giải:
a)
* Nhà máy A:
+ Số trung bình mức lương hàng tháng: .
+ Giá trị 4 và 5 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy A là 4 và 5.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
4; 4; 4; 5; 5; 5; 6; 47.
Vì cỡ mẫu là 8 là số chẵn nên tứ phân vị thứ hai là Q2A = 5.
Tứ phân vị thứ nhất là trung vị của mẫu: 4; 4; 4; 5. Do đó Q1A = 4.
Tứ phân vị thứ ba là trung vị của mẫu: 5; 5; 6; 47. Do đó Q3A = 5,5.
+ Phương sai mẫu:
(42 + 52 + 52 + 472 + 52 + 62 + 42 + 42) – 102 = 196.
+ Độ lệch chuẩn: SA = .
* Nhà máy B:
+ Số trung bình mức lương hàng tháng: .
+ Giá trị 9 có tần số lớn nhất nên mốt của mẫu số liệu ở nhà máy B là 9.
+ Sắp xếp các số liệu theo thứ tự không giảm, ta được:
2; 8; 9; 9; 9; 9; 9; 10; 11.
Vì cỡ mẫu là 9 là số lẻ nên tứ phân vị thứ hai là Q2B = 9.
Tứ phân vị thứ nhất là trung vị của mẫu: 2; 8; 9; 9. Do đó Q1B = 8,5.
Tứ phân vị thứ ba là trung vị của mẫu: 9; 9; 10; 11. Do đó Q3B = 9,5.
+ Phương sai mẫu:
(22 + 82 + 92 + 92 + 92 + 92 + 92 + 102 + 112) – 8,42 = 6,55.
+ Độ lệch chuẩn: SB = .
b)
+ Khoảng tứ phân vị của mẫu số liệu ở nhà máy A là: ∆QA = 5,5 – 4 = 1,5.
Ta có: Q3A + 1,5∆QA = 5,5 + 1,5 . 1,5 = 7,75 và Q1A – 1,5∆QA = 4 – 1,5 . 1,5 = 1,75.
Do đó giá trị ngoại lệ trong mẫu số liệu ở nhà máy A là 47.
Xem thêm các bài giải SGK Toán 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Bài tập cuối chương 6
Bài 1: Dùng máy tính cầm tay để tính toán với số gần đúng và tính các số đặc trưng của mẫu số liệu thống kê
Bài 2: Dùng bảng tính để tính các số đặc trưng của mẫu số liệu thống kê