Giải SBT Toán 11 Bài 3: Đường thẳng và mặt phẳng song song
Giải SBT Toán 11 trang 121
Bài 1 trang 121 SBT Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác ABD và ACD. Chứng minh G1G2 song song với các mặt phẳng (ABC) và (BCD).
Lời giải:
Gọi M, N lần lượt là trung điểm của DB, DC.
Xét ∆DBC có M, N lần lượt là trung điểm của DB, DC nên MN là đường trung bình của ∆DBC, suy ra MN // BC.
Do G1 là trọng tâm ∆ABD nên ;
G2 là trọng tâm ∆ACD nên .
Do đó .
Trong tam giác AMN, ta có nên G1G2 // MN (định lí Thalès đảo)
Mà MN // BC (chứng minh trên)
Suy ra G1G2 // MN // BC, mà BC ⊂ (ABC), MN ⊂ (BCD).
Suy ra G1G2 song song với các mặt phẳng (ABC) và (BCD).
Bài 2 trang 121 SBT Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng có tâm lần lượt là O và O’.
a) Chứng minh OO’ song song với các mặt phẳng (ADF) và (BCE).
b) Gọi M, N lần lượt là hai điểm thuộc hai cạnh AF, AD sao cho AM = AF, AN = AD Chứng minh MN // (DCEF).
Lời giải:
a) Do O, O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O là trung điểm của BD, AC và O’ là trung điểm của BF, AE.
Xét trong ∆BDF có: O, O’ lần lượt là trung điểm của BD, BF nên OO’ là đường trung bình của ∆BDF, suy ra OO’ // DF (1)
Tương tự, trong ∆ACE ta cũng có OO’ // CE (2)
Từ (1) và (2) suy ra OO’ // DF // CE, mà DF ⊂ (ADF), CE ⊂ (BCE)
Suy ra OO’ song song với các mặt phẳng (ADF) và (BCE).
b) Do AM = AF, AN = AD nên
Xét ∆ADF có suy ra MN // DF (định lý Thalès đảo)
Mà DF ⊂ (DCEF), suy ra MN // (DCEF).
Giải SBT Toán 11 trang 122
Bài 3 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là một hình bình hành. Gọi G là trọng tâm của tam giác SAB, I là trung điểm của AB và M là điểm thuộc cạnh AD sao cho AM = AD. Đường thẳng đi qua M và song song với AB cắt CI tại N. Chứng minh:
a) NG // (SCD);
b) MG // (SCD).
Lời giải:
a) Gọi F là giao điểm của MN và BC.
Ta có MN // AB, suy ra NF // BI (vì F ∈ MN, I ∈ AB).
Trong ∆CIB có NF // BI, nên theo định lí Thalès ta có: (1)
Mặt khác, AM = AD suy ra
Lại có MF // AB // DC nên (2)
Từ (1) và (2) suy ra
Trong ∆SAB, ta có G là trọng tâm nên .
Trong ∆SIC, ta có suy ra GN // SC (định lí Thalès đảo).
Mà SC ⊂ (SDC), do đó NG // (SDC).
b) Trong mặt phẳng (ABCD), gọi O là giao điểm của MI và DC.
Trong ∆OCI có MN // OC (do O ∈ DC), suy ra (theo định lí Thalès).
Mà (G là trọng tâm của ∆SAB).
Do đó, trong ∆SOI có , suy ra MG // OS (định lí Thalès đảo).
Mà OS ⊂ (SDC), do đó MG // (SDC).
Bài 4 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của hai cạnh AB và CD, P là trung điểm của SA. Chứng minh:
a) MN song song với các mặt phẳng (SBC) và (SAD);
b) SB song song với (MNP);
c) SC song song với (MNP).
d) Gọi G1 và G2 theo thứ tự là trọng tâm của hai tam giác ABC và SBC. Chứng minh G1G2 song song với (SAD).
Lời giải:
a) Hình bình hành ABCD có M, N lần lượt là trung điểm của hai cạnh AB và CD nên MN // AD // BC
Ta có MN // BC và BC ⊂ (SBC), suy ra MN // (SBC);
MN // AD và AD ⊂ (SAD), suy ra MN // (SAD).
Vậy MN song song với các mặt phẳng (SBC) và (SAD).
b) Trong ∆SAB, có P, M lần lượt là trung điểm của SA, AB nên PM là đường trung bình, suy ra PM // SB
Mà PM ⊂ (MNP), suy ra SB // (MNP).
c) Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và song song AB.
Gọi E là giao điểm của MP và d.
Ta có d // AB hay ES // AB, mà AB // CD nên ES // DC, tức là ES // NC (1)
Ta cũng có ES // MB và EM // SB nên MBSE là hình bình hành, suy ra ES = MB
Mà MB = NC (do M, N lần lượt là trung điểm của AB, DC và AB = DC)
Suy ra ES = NC (2)
Từ (1) và (2) suy ra ESCN là hình bình hành nên SC // NE.
Lại có NE ⊂ (MNP), suy ra SC // (MNP).
d) Gọi I là trung điểm của BC.
Do G1 và G2 theo thứ tự là trọng tâm của ∆ABC và ∆SBC nên
Trong ∆SIA, ta có , suy ra G1G2 // SA (định lí Thalès đảo)
Mà SA ⊂ (SAD), nên G1G2 // (SAD).
Bài 5 trang 122 SBT Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi (α) là mặt phẳng đi qua trung điểm M của cạnh AB, song song với BD và SA. Tìm giao tuyến của mặt phẳng (α) với các mặt của hình chóp.
Lời giải:
Gọi N, P, R lần lượt là trung điểm của AD, SD, SB.
Xét ∆ABD có M, N lần lượt là trung điểm của AB, AD nên MN là đường trung bình của tam giác. Do đó MN // BD.
Xét ∆SBD có P, R lần lượt là trung điểm của SD, SB nên PR là đường trung bình của tam giác. Do đó PR // BD.
Từ các kết quả trên ta có: MN // PR (do cùng song song với BD).
Suy ra bốn điểm M, N, P, R tạo thành một mặt phẳng (MNPR).
Ta có MN // BD và MN ⊂ (MNPR) nên BD // (MNPR)
Tương tự, ta cũng có SA // (MNPR)
Ta thấy (MNPR) đi qua M và song song với BD, và SA nên chính là mp(α).
Trong mặt phẳng (SAB) vẽ đường thẳng d đi qua S và d // AB // CD.
Khi đó, giả sử MR cắt d tại I, PI cắt SC tại Q.
Lúc này, mặt phẳng (α) là (MNPI).
Ta có MN ⊂ (ABCD), MN ⊂ (MNPI) nên (MNPI) ∩ (ABCD) = MN hay (α) ∩ (ABCD) = MN.
Tương tự, (α) ∩ (SAD) = NP, (α) ∩ (SCD) = PQ, (α) ∩ (SBC) = QR, (α) ∩ (SAB) = MR.
Xem thêm các bài giải SBT Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Hai đường thẳng song song
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Phép chiếu song song
Bài tập cuối chương 4
Bài 1: Số trung bình và mốt của mẫu số liệu ghép nhóm